Loading…
Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique
To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial in...
Saved in:
Published in: | Land degradation & development 2023-03, Vol.34 (5), p.1558-1569 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903 |
---|---|
cites | cdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903 |
container_end_page | 1569 |
container_issue | 5 |
container_start_page | 1558 |
container_title | Land degradation & development |
container_volume | 34 |
creator | Mohieddinne, Hamza Brasseur, Boris Gallet‐Moron, Emilie Lenoir, Jonathan Spicher, Fabien Kobaissi, Ahmad Horen, Hélène |
description | To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations. |
doi_str_mv | 10.1002/ldr.4553 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04007808v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788247455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AgCs4p-CcEfNGHzkubLOljmT8mFISh4FvMmnTLaJOZdMr-e1snvvl0x92H4_gidElgQgDS20aHCWUsO0IjAnmeEMrejodesCRLuThFZzFuAIBwykfovYjRxNga12Ff4-htgyvfblXVWe-wchqHXddZt8LW4VY5tTIa1z6Y2EXcrYPfrdY9w8qGpQ_O4NLeFQvcmWrt7MfOnKOTWjXRXPzWMXp9uH-ZzZPy-fFpVpRJlU1JlqSgleDplNA6Z1NDdUU1Sbla8twIofqFpoLUTBiaE8ZqDZVhmgAlHFSVQzZGN4e7a9XIbbCtCnvplZXzopTDDCgAFyA-SW-vDnYbfP9i7OTG74Lr35N9QiKlfEhwjK4Pqgo-xmDqv7ME5JC17LOWg-xpcqBftjH7f50s7xY__huCmX62</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788247455</pqid></control><display><type>article</type><title>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</title><source>Wiley</source><creator>Mohieddinne, Hamza ; Brasseur, Boris ; Gallet‐Moron, Emilie ; Lenoir, Jonathan ; Spicher, Fabien ; Kobaissi, Ahmad ; Horen, Hélène</creator><creatorcontrib>Mohieddinne, Hamza ; Brasseur, Boris ; Gallet‐Moron, Emilie ; Lenoir, Jonathan ; Spicher, Fabien ; Kobaissi, Ahmad ; Horen, Hélène</creatorcontrib><description>To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations.</description><identifier>ISSN: 1085-3278</identifier><identifier>EISSN: 1099-145X</identifier><identifier>DOI: 10.1002/ldr.4553</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>airborne LiDAR ; Aquatic plants ; Environmental monitoring ; Flowers & plants ; Forest management ; Forests ; Lidar ; Life Sciences ; Logging ; Plant species ; Plants (botany) ; Quality assessment ; remote sensing ; Sampling designs ; Soil chemistry ; Soil compaction ; soil compaction and rutting ; Soil management ; Soil pH ; Soil properties ; Soil texture ; Species composition ; species response curves ; Sustainability management ; Sustainable forestry ; Terrain models ; Texture ; Understory</subject><ispartof>Land degradation & development, 2023-03, Vol.34 (5), p.1558-1569</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</citedby><cites>FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</cites><orcidid>0000-0002-9435-0583 ; 0000-0002-5206-5426 ; 0000-0003-0638-9582 ; 0000-0002-9999-955X ; 0000-0003-1579-5013 ; 0000-0001-9504-1507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://u-picardie.hal.science/hal-04007808$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohieddinne, Hamza</creatorcontrib><creatorcontrib>Brasseur, Boris</creatorcontrib><creatorcontrib>Gallet‐Moron, Emilie</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Spicher, Fabien</creatorcontrib><creatorcontrib>Kobaissi, Ahmad</creatorcontrib><creatorcontrib>Horen, Hélène</creatorcontrib><title>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</title><title>Land degradation & development</title><description>To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations.</description><subject>airborne LiDAR</subject><subject>Aquatic plants</subject><subject>Environmental monitoring</subject><subject>Flowers & plants</subject><subject>Forest management</subject><subject>Forests</subject><subject>Lidar</subject><subject>Life Sciences</subject><subject>Logging</subject><subject>Plant species</subject><subject>Plants (botany)</subject><subject>Quality assessment</subject><subject>remote sensing</subject><subject>Sampling designs</subject><subject>Soil chemistry</subject><subject>Soil compaction</subject><subject>soil compaction and rutting</subject><subject>Soil management</subject><subject>Soil pH</subject><subject>Soil properties</subject><subject>Soil texture</subject><subject>Species composition</subject><subject>species response curves</subject><subject>Sustainability management</subject><subject>Sustainable forestry</subject><subject>Terrain models</subject><subject>Texture</subject><subject>Understory</subject><issn>1085-3278</issn><issn>1099-145X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10N9LwzAQB_AgCs4p-CcEfNGHzkubLOljmT8mFISh4FvMmnTLaJOZdMr-e1snvvl0x92H4_gidElgQgDS20aHCWUsO0IjAnmeEMrejodesCRLuThFZzFuAIBwykfovYjRxNga12Ff4-htgyvfblXVWe-wchqHXddZt8LW4VY5tTIa1z6Y2EXcrYPfrdY9w8qGpQ_O4NLeFQvcmWrt7MfOnKOTWjXRXPzWMXp9uH-ZzZPy-fFpVpRJlU1JlqSgleDplNA6Z1NDdUU1Sbla8twIofqFpoLUTBiaE8ZqDZVhmgAlHFSVQzZGN4e7a9XIbbCtCnvplZXzopTDDCgAFyA-SW-vDnYbfP9i7OTG74Lr35N9QiKlfEhwjK4Pqgo-xmDqv7ME5JC17LOWg-xpcqBftjH7f50s7xY__huCmX62</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Mohieddinne, Hamza</creator><creator>Brasseur, Boris</creator><creator>Gallet‐Moron, Emilie</creator><creator>Lenoir, Jonathan</creator><creator>Spicher, Fabien</creator><creator>Kobaissi, Ahmad</creator><creator>Horen, Hélène</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9435-0583</orcidid><orcidid>https://orcid.org/0000-0002-5206-5426</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-9999-955X</orcidid><orcidid>https://orcid.org/0000-0003-1579-5013</orcidid><orcidid>https://orcid.org/0000-0001-9504-1507</orcidid></search><sort><creationdate>202303</creationdate><title>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</title><author>Mohieddinne, Hamza ; Brasseur, Boris ; Gallet‐Moron, Emilie ; Lenoir, Jonathan ; Spicher, Fabien ; Kobaissi, Ahmad ; Horen, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>airborne LiDAR</topic><topic>Aquatic plants</topic><topic>Environmental monitoring</topic><topic>Flowers & plants</topic><topic>Forest management</topic><topic>Forests</topic><topic>Lidar</topic><topic>Life Sciences</topic><topic>Logging</topic><topic>Plant species</topic><topic>Plants (botany)</topic><topic>Quality assessment</topic><topic>remote sensing</topic><topic>Sampling designs</topic><topic>Soil chemistry</topic><topic>Soil compaction</topic><topic>soil compaction and rutting</topic><topic>Soil management</topic><topic>Soil pH</topic><topic>Soil properties</topic><topic>Soil texture</topic><topic>Species composition</topic><topic>species response curves</topic><topic>Sustainability management</topic><topic>Sustainable forestry</topic><topic>Terrain models</topic><topic>Texture</topic><topic>Understory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohieddinne, Hamza</creatorcontrib><creatorcontrib>Brasseur, Boris</creatorcontrib><creatorcontrib>Gallet‐Moron, Emilie</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Spicher, Fabien</creatorcontrib><creatorcontrib>Kobaissi, Ahmad</creatorcontrib><creatorcontrib>Horen, Hélène</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Land degradation & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohieddinne, Hamza</au><au>Brasseur, Boris</au><au>Gallet‐Moron, Emilie</au><au>Lenoir, Jonathan</au><au>Spicher, Fabien</au><au>Kobaissi, Ahmad</au><au>Horen, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</atitle><jtitle>Land degradation & development</jtitle><date>2023-03</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>1558</spage><epage>1569</epage><pages>1558-1569</pages><issn>1085-3278</issn><eissn>1099-145X</eissn><abstract>To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/ldr.4553</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9435-0583</orcidid><orcidid>https://orcid.org/0000-0002-5206-5426</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-9999-955X</orcidid><orcidid>https://orcid.org/0000-0003-1579-5013</orcidid><orcidid>https://orcid.org/0000-0001-9504-1507</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3278 |
ispartof | Land degradation & development, 2023-03, Vol.34 (5), p.1558-1569 |
issn | 1085-3278 1099-145X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04007808v1 |
source | Wiley |
subjects | airborne LiDAR Aquatic plants Environmental monitoring Flowers & plants Forest management Forests Lidar Life Sciences Logging Plant species Plants (botany) Quality assessment remote sensing Sampling designs Soil chemistry Soil compaction soil compaction and rutting Soil management Soil pH Soil properties Soil texture Species composition species response curves Sustainability management Sustainable forestry Terrain models Texture Understory |
title | Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20soil%20compaction%20and%20rutting%20in%20managed%20forests%20through%20an%20airborne%20LiDAR%20technique&rft.jtitle=Land%20degradation%20&%20development&rft.au=Mohieddinne,%20Hamza&rft.date=2023-03&rft.volume=34&rft.issue=5&rft.spage=1558&rft.epage=1569&rft.pages=1558-1569&rft.issn=1085-3278&rft.eissn=1099-145X&rft_id=info:doi/10.1002/ldr.4553&rft_dat=%3Cproquest_hal_p%3E2788247455%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788247455&rft_id=info:pmid/&rfr_iscdi=true |