Loading…

Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique

To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial in...

Full description

Saved in:
Bibliographic Details
Published in:Land degradation & development 2023-03, Vol.34 (5), p.1558-1569
Main Authors: Mohieddinne, Hamza, Brasseur, Boris, Gallet‐Moron, Emilie, Lenoir, Jonathan, Spicher, Fabien, Kobaissi, Ahmad, Horen, Hélène
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903
cites cdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903
container_end_page 1569
container_issue 5
container_start_page 1558
container_title Land degradation & development
container_volume 34
creator Mohieddinne, Hamza
Brasseur, Boris
Gallet‐Moron, Emilie
Lenoir, Jonathan
Spicher, Fabien
Kobaissi, Ahmad
Horen, Hélène
description To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations.
doi_str_mv 10.1002/ldr.4553
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04007808v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788247455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AgCs4p-CcEfNGHzkubLOljmT8mFISh4FvMmnTLaJOZdMr-e1snvvl0x92H4_gidElgQgDS20aHCWUsO0IjAnmeEMrejodesCRLuThFZzFuAIBwykfovYjRxNga12Ff4-htgyvfblXVWe-wchqHXddZt8LW4VY5tTIa1z6Y2EXcrYPfrdY9w8qGpQ_O4NLeFQvcmWrt7MfOnKOTWjXRXPzWMXp9uH-ZzZPy-fFpVpRJlU1JlqSgleDplNA6Z1NDdUU1Sbla8twIofqFpoLUTBiaE8ZqDZVhmgAlHFSVQzZGN4e7a9XIbbCtCnvplZXzopTDDCgAFyA-SW-vDnYbfP9i7OTG74Lr35N9QiKlfEhwjK4Pqgo-xmDqv7ME5JC17LOWg-xpcqBftjH7f50s7xY__huCmX62</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788247455</pqid></control><display><type>article</type><title>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</title><source>Wiley</source><creator>Mohieddinne, Hamza ; Brasseur, Boris ; Gallet‐Moron, Emilie ; Lenoir, Jonathan ; Spicher, Fabien ; Kobaissi, Ahmad ; Horen, Hélène</creator><creatorcontrib>Mohieddinne, Hamza ; Brasseur, Boris ; Gallet‐Moron, Emilie ; Lenoir, Jonathan ; Spicher, Fabien ; Kobaissi, Ahmad ; Horen, Hélène</creatorcontrib><description>To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations.</description><identifier>ISSN: 1085-3278</identifier><identifier>EISSN: 1099-145X</identifier><identifier>DOI: 10.1002/ldr.4553</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>airborne LiDAR ; Aquatic plants ; Environmental monitoring ; Flowers &amp; plants ; Forest management ; Forests ; Lidar ; Life Sciences ; Logging ; Plant species ; Plants (botany) ; Quality assessment ; remote sensing ; Sampling designs ; Soil chemistry ; Soil compaction ; soil compaction and rutting ; Soil management ; Soil pH ; Soil properties ; Soil texture ; Species composition ; species response curves ; Sustainability management ; Sustainable forestry ; Terrain models ; Texture ; Understory</subject><ispartof>Land degradation &amp; development, 2023-03, Vol.34 (5), p.1558-1569</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</citedby><cites>FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</cites><orcidid>0000-0002-9435-0583 ; 0000-0002-5206-5426 ; 0000-0003-0638-9582 ; 0000-0002-9999-955X ; 0000-0003-1579-5013 ; 0000-0001-9504-1507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://u-picardie.hal.science/hal-04007808$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohieddinne, Hamza</creatorcontrib><creatorcontrib>Brasseur, Boris</creatorcontrib><creatorcontrib>Gallet‐Moron, Emilie</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Spicher, Fabien</creatorcontrib><creatorcontrib>Kobaissi, Ahmad</creatorcontrib><creatorcontrib>Horen, Hélène</creatorcontrib><title>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</title><title>Land degradation &amp; development</title><description>To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations.</description><subject>airborne LiDAR</subject><subject>Aquatic plants</subject><subject>Environmental monitoring</subject><subject>Flowers &amp; plants</subject><subject>Forest management</subject><subject>Forests</subject><subject>Lidar</subject><subject>Life Sciences</subject><subject>Logging</subject><subject>Plant species</subject><subject>Plants (botany)</subject><subject>Quality assessment</subject><subject>remote sensing</subject><subject>Sampling designs</subject><subject>Soil chemistry</subject><subject>Soil compaction</subject><subject>soil compaction and rutting</subject><subject>Soil management</subject><subject>Soil pH</subject><subject>Soil properties</subject><subject>Soil texture</subject><subject>Species composition</subject><subject>species response curves</subject><subject>Sustainability management</subject><subject>Sustainable forestry</subject><subject>Terrain models</subject><subject>Texture</subject><subject>Understory</subject><issn>1085-3278</issn><issn>1099-145X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10N9LwzAQB_AgCs4p-CcEfNGHzkubLOljmT8mFISh4FvMmnTLaJOZdMr-e1snvvl0x92H4_gidElgQgDS20aHCWUsO0IjAnmeEMrejodesCRLuThFZzFuAIBwykfovYjRxNga12Ff4-htgyvfblXVWe-wchqHXddZt8LW4VY5tTIa1z6Y2EXcrYPfrdY9w8qGpQ_O4NLeFQvcmWrt7MfOnKOTWjXRXPzWMXp9uH-ZzZPy-fFpVpRJlU1JlqSgleDplNA6Z1NDdUU1Sbla8twIofqFpoLUTBiaE8ZqDZVhmgAlHFSVQzZGN4e7a9XIbbCtCnvplZXzopTDDCgAFyA-SW-vDnYbfP9i7OTG74Lr35N9QiKlfEhwjK4Pqgo-xmDqv7ME5JC17LOWg-xpcqBftjH7f50s7xY__huCmX62</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Mohieddinne, Hamza</creator><creator>Brasseur, Boris</creator><creator>Gallet‐Moron, Emilie</creator><creator>Lenoir, Jonathan</creator><creator>Spicher, Fabien</creator><creator>Kobaissi, Ahmad</creator><creator>Horen, Hélène</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9435-0583</orcidid><orcidid>https://orcid.org/0000-0002-5206-5426</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-9999-955X</orcidid><orcidid>https://orcid.org/0000-0003-1579-5013</orcidid><orcidid>https://orcid.org/0000-0001-9504-1507</orcidid></search><sort><creationdate>202303</creationdate><title>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</title><author>Mohieddinne, Hamza ; Brasseur, Boris ; Gallet‐Moron, Emilie ; Lenoir, Jonathan ; Spicher, Fabien ; Kobaissi, Ahmad ; Horen, Hélène</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>airborne LiDAR</topic><topic>Aquatic plants</topic><topic>Environmental monitoring</topic><topic>Flowers &amp; plants</topic><topic>Forest management</topic><topic>Forests</topic><topic>Lidar</topic><topic>Life Sciences</topic><topic>Logging</topic><topic>Plant species</topic><topic>Plants (botany)</topic><topic>Quality assessment</topic><topic>remote sensing</topic><topic>Sampling designs</topic><topic>Soil chemistry</topic><topic>Soil compaction</topic><topic>soil compaction and rutting</topic><topic>Soil management</topic><topic>Soil pH</topic><topic>Soil properties</topic><topic>Soil texture</topic><topic>Species composition</topic><topic>species response curves</topic><topic>Sustainability management</topic><topic>Sustainable forestry</topic><topic>Terrain models</topic><topic>Texture</topic><topic>Understory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohieddinne, Hamza</creatorcontrib><creatorcontrib>Brasseur, Boris</creatorcontrib><creatorcontrib>Gallet‐Moron, Emilie</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Spicher, Fabien</creatorcontrib><creatorcontrib>Kobaissi, Ahmad</creatorcontrib><creatorcontrib>Horen, Hélène</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Land degradation &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohieddinne, Hamza</au><au>Brasseur, Boris</au><au>Gallet‐Moron, Emilie</au><au>Lenoir, Jonathan</au><au>Spicher, Fabien</au><au>Kobaissi, Ahmad</au><au>Horen, Hélène</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique</atitle><jtitle>Land degradation &amp; development</jtitle><date>2023-03</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>1558</spage><epage>1569</epage><pages>1558-1569</pages><issn>1085-3278</issn><eissn>1099-145X</eissn><abstract>To ensure sustainable forest management, the assessment and monitoring of soil compaction and rutting are essential. Here, we used airborne light detection and ranging‐derived digital terrain model (LiDAR‐derived DTM), available for the forest of Compiègne in northern France, to compute a spatial index of soil rutting. Following an environmental systematic sampling design, we selected 45 plots representative of the forest stand conditions where we subsequently extracted information from the DTM to compute the cumulative length of ruts (CLR). To assess the quality of this LiDAR‐derived index, we related the CLR index to in‐situ soil and vegetation parameters such as soil texture, soil pH, and understory plant species composition. Floristic surveys were carried out across all 45 plots to generate plant species response curves along the CLR gradient. We found soil texture, soil type, and soil pH to be important determinants of CLR. For instance, CLR was the highest in soils with the highest clay content. A total of 22 out of the 94 understory plant species we analyzed showed a significant response curve along the CLR gradient. Most important, the occurrence probability of species associated with wet soils and stagnant waters (e.g., Juncus effusus), like those found in ruts, increased with CLR. Other species associated with dry soils (e.g., Hedera helix) showed a negative response curve along the CLR gradient. In conclusion, the proposed index (CLR) has proven useful to remotely assess soil compaction and rutting after logging operations.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/ldr.4553</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9435-0583</orcidid><orcidid>https://orcid.org/0000-0002-5206-5426</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-9999-955X</orcidid><orcidid>https://orcid.org/0000-0003-1579-5013</orcidid><orcidid>https://orcid.org/0000-0001-9504-1507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3278
ispartof Land degradation & development, 2023-03, Vol.34 (5), p.1558-1569
issn 1085-3278
1099-145X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04007808v1
source Wiley
subjects airborne LiDAR
Aquatic plants
Environmental monitoring
Flowers & plants
Forest management
Forests
Lidar
Life Sciences
Logging
Plant species
Plants (botany)
Quality assessment
remote sensing
Sampling designs
Soil chemistry
Soil compaction
soil compaction and rutting
Soil management
Soil pH
Soil properties
Soil texture
Species composition
species response curves
Sustainability management
Sustainable forestry
Terrain models
Texture
Understory
title Assessment of soil compaction and rutting in managed forests through an airborne LiDAR technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20soil%20compaction%20and%20rutting%20in%20managed%20forests%20through%20an%20airborne%20LiDAR%20technique&rft.jtitle=Land%20degradation%20&%20development&rft.au=Mohieddinne,%20Hamza&rft.date=2023-03&rft.volume=34&rft.issue=5&rft.spage=1558&rft.epage=1569&rft.pages=1558-1569&rft.issn=1085-3278&rft.eissn=1099-145X&rft_id=info:doi/10.1002/ldr.4553&rft_dat=%3Cproquest_hal_p%3E2788247455%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3613-20da872614f956e4dc4d127ab79e88a261d481f58e49155fd0ce5d104170ac903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2788247455&rft_id=info:pmid/&rfr_iscdi=true