Loading…
A Richards’ equation-based model for wave-resolving simulation of variably-saturated beach groundwater flow dynamics
This study introduces a model based on Richards’ equation to describe variably-saturated beach groundwater flow. The surface wave propagation is computed by the phase-resolving non-hydrostatic SWASH code. The SWASH data are used to make a suitable dynamic boundary condition at the beach face to forc...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2023-04, Vol.619, p.129344, Article 129344 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study introduces a model based on Richards’ equation to describe variably-saturated beach groundwater flow. The surface wave propagation is computed by the phase-resolving non-hydrostatic SWASH code. The SWASH data are used to make a suitable dynamic boundary condition at the beach face to force Richards’ equation. The latter is solved by a weighted discontinuous Galerkin method together with adaptive mesh refinement. The model is validated by comparison with a laboratory experiment of a transient water table recharge problem. Then, the BARDEX II prototype-scale experiment is considered to assess the model abilities for beach groundwater dynamics. The barrier beach is studied for three cases with different lagoon levels. Steady-state results with no-wave conditions show excellent agreement. Transient waves simulations are evaluated in terms of pressure heads, saturations, water table position and groundwater velocities for time-averaged, swash-resolving and spectral analysis. Results bring interesting insights about beach groundwater modelling by comparison with the experimental data as well as a Darcy’s equation-based model. A first investigation is carried out to assess the groundwater effect on the bed sediment dynamics through the modification of sediment relative weight.
•A Richards-based model for wave-driven variably-saturated beach groundwater dynamics.•Model validation against BARDEX II large-scale sand barrier experiments.•Detailed 2DV analysis of swash-driven groundwater flow dynamics. |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/j.jhydrol.2023.129344 |