Loading…

Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide

Both amide bond protonation triggering peptide fragmentations and the controversial b -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry 2020-06, Vol.34 (12), p.e8778
Main Authors: Cautereels, Julie, Giribaldi, Julien, Enjalbal, Christine, Blockhuys, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3
cites cdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3
container_end_page
container_issue 12
container_start_page e8778
container_title Rapid communications in mass spectrometry
container_volume 34
creator Cautereels, Julie
Giribaldi, Julien
Enjalbal, Christine
Blockhuys, Frank
description Both amide bond protonation triggering peptide fragmentations and the controversial b -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b -ion formation was investigated, focusing on the QHS model tripeptide. To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b -ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS and MS tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS ) method was used to predict fragmentation patterns. Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b -ions using MS and MS mass spectra, the calculations indicated that the QH b -ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation. In contrast to glycine-histidine-containing b -ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.
doi_str_mv 10.1002/rcm.8778
format article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04016788v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32144813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4Mobk7BTyB51IfOXNOuqW9j6CYMRNTnck1TF2makmRCP4Df25bpnu743-8O7kfINbA5MBbfO2nmIsvECZkCy7OIxRxOyZTlKUQJ5GJCLrz_Ygwgjdk5mfAYkkQAn5Kf1z22YW-o3CmjJTbUoPfUd0oGZ40Krn-gy5LqVgdtqQ_7qqe2piWNaaRtS2vrDIaxM0rusNXe-DGkYaeo1-1n09PO2WBbDKqi66aNNtpHb2ognO5UF3SlLslZjY1XV391Rj6eHt9Xm2j7sn5eLbeRhDjnUc4XZZ2iLDOsEgSVDL_yBWdY5ZlI4jjHVKRlDVXFhEBUSZ7KTMgUOMphIPmM3B3u7rApOqcNur6wqIvNcluMGUsYLDIhvmFgbw-sdNZ7p-rjArBitF4M1ovR-oDeHNBuXxpVHcF_zfwXPrt-Mg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cautereels, Julie ; Giribaldi, Julien ; Enjalbal, Christine ; Blockhuys, Frank</creator><creatorcontrib>Cautereels, Julie ; Giribaldi, Julien ; Enjalbal, Christine ; Blockhuys, Frank</creatorcontrib><description>Both amide bond protonation triggering peptide fragmentations and the controversial b -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b -ion formation was investigated, focusing on the QHS model tripeptide. To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b -ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS and MS tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS ) method was used to predict fragmentation patterns. Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b -ions using MS and MS mass spectra, the calculations indicated that the QH b -ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation. In contrast to glycine-histidine-containing b -ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.8778</identifier><identifier>PMID: 32144813</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Amides ; Amides - chemistry ; Chemical Sciences ; Diketopiperazines ; Diketopiperazines - chemistry ; Glycine ; Glycine - chemistry ; Histidine ; Histidine - chemistry ; Ions ; Ions - chemistry ; MAss Spectrometry ; Mass Spectrometry - methods ; Oligopeptides ; Oligopeptides - analysis ; Oligopeptides - chemistry ; Oxazolone ; Oxazolone - chemistry ; Protons ; Thermodynamics</subject><ispartof>Rapid communications in mass spectrometry, 2020-06, Vol.34 (12), p.e8778</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</citedby><cites>FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</cites><orcidid>0000-0002-2201-6682 ; 0000-0003-4646-4583 ; 0000-0002-4273-3080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32144813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04016788$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cautereels, Julie</creatorcontrib><creatorcontrib>Giribaldi, Julien</creatorcontrib><creatorcontrib>Enjalbal, Christine</creatorcontrib><creatorcontrib>Blockhuys, Frank</creatorcontrib><title>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun Mass Spectrom</addtitle><description>Both amide bond protonation triggering peptide fragmentations and the controversial b -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b -ion formation was investigated, focusing on the QHS model tripeptide. To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b -ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS and MS tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS ) method was used to predict fragmentation patterns. Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b -ions using MS and MS mass spectra, the calculations indicated that the QH b -ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation. In contrast to glycine-histidine-containing b -ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.</description><subject>Amides</subject><subject>Amides - chemistry</subject><subject>Chemical Sciences</subject><subject>Diketopiperazines</subject><subject>Diketopiperazines - chemistry</subject><subject>Glycine</subject><subject>Glycine - chemistry</subject><subject>Histidine</subject><subject>Histidine - chemistry</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>MAss Spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Oligopeptides</subject><subject>Oligopeptides - analysis</subject><subject>Oligopeptides - chemistry</subject><subject>Oxazolone</subject><subject>Oxazolone - chemistry</subject><subject>Protons</subject><subject>Thermodynamics</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4Mobk7BTyB51IfOXNOuqW9j6CYMRNTnck1TF2makmRCP4Df25bpnu743-8O7kfINbA5MBbfO2nmIsvECZkCy7OIxRxOyZTlKUQJ5GJCLrz_Ygwgjdk5mfAYkkQAn5Kf1z22YW-o3CmjJTbUoPfUd0oGZ40Krn-gy5LqVgdtqQ_7qqe2piWNaaRtS2vrDIaxM0rusNXe-DGkYaeo1-1n09PO2WBbDKqi66aNNtpHb2ognO5UF3SlLslZjY1XV391Rj6eHt9Xm2j7sn5eLbeRhDjnUc4XZZ2iLDOsEgSVDL_yBWdY5ZlI4jjHVKRlDVXFhEBUSZ7KTMgUOMphIPmM3B3u7rApOqcNur6wqIvNcluMGUsYLDIhvmFgbw-sdNZ7p-rjArBitF4M1ovR-oDeHNBuXxpVHcF_zfwXPrt-Mg</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Cautereels, Julie</creator><creator>Giribaldi, Julien</creator><creator>Enjalbal, Christine</creator><creator>Blockhuys, Frank</creator><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2201-6682</orcidid><orcidid>https://orcid.org/0000-0003-4646-4583</orcidid><orcidid>https://orcid.org/0000-0002-4273-3080</orcidid></search><sort><creationdate>20200630</creationdate><title>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</title><author>Cautereels, Julie ; Giribaldi, Julien ; Enjalbal, Christine ; Blockhuys, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amides</topic><topic>Amides - chemistry</topic><topic>Chemical Sciences</topic><topic>Diketopiperazines</topic><topic>Diketopiperazines - chemistry</topic><topic>Glycine</topic><topic>Glycine - chemistry</topic><topic>Histidine</topic><topic>Histidine - chemistry</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>MAss Spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Oligopeptides</topic><topic>Oligopeptides - analysis</topic><topic>Oligopeptides - chemistry</topic><topic>Oxazolone</topic><topic>Oxazolone - chemistry</topic><topic>Protons</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cautereels, Julie</creatorcontrib><creatorcontrib>Giribaldi, Julien</creatorcontrib><creatorcontrib>Enjalbal, Christine</creatorcontrib><creatorcontrib>Blockhuys, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cautereels, Julie</au><au>Giribaldi, Julien</au><au>Enjalbal, Christine</au><au>Blockhuys, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun Mass Spectrom</addtitle><date>2020-06-30</date><risdate>2020</risdate><volume>34</volume><issue>12</issue><spage>e8778</spage><pages>e8778-</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Both amide bond protonation triggering peptide fragmentations and the controversial b -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b -ion formation was investigated, focusing on the QHS model tripeptide. To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b -ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS and MS tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS ) method was used to predict fragmentation patterns. Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b -ions using MS and MS mass spectra, the calculations indicated that the QH b -ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation. In contrast to glycine-histidine-containing b -ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.</abstract><cop>England</cop><pub>Wiley</pub><pmid>32144813</pmid><doi>10.1002/rcm.8778</doi><orcidid>https://orcid.org/0000-0002-2201-6682</orcidid><orcidid>https://orcid.org/0000-0003-4646-4583</orcidid><orcidid>https://orcid.org/0000-0002-4273-3080</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2020-06, Vol.34 (12), p.e8778
issn 0951-4198
1097-0231
language eng
recordid cdi_hal_primary_oai_HAL_hal_04016788v1
source Wiley-Blackwell Read & Publish Collection
subjects Amides
Amides - chemistry
Chemical Sciences
Diketopiperazines
Diketopiperazines - chemistry
Glycine
Glycine - chemistry
Histidine
Histidine - chemistry
Ions
Ions - chemistry
MAss Spectrometry
Mass Spectrometry - methods
Oligopeptides
Oligopeptides - analysis
Oligopeptides - chemistry
Oxazolone
Oxazolone - chemistry
Protons
Thermodynamics
title Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20chemical%20mass%20spectrometry:%20Ab%20initio%20study%20of%20b%202%20-ion%20formation%20mechanisms%20for%20the%20singly%20protonated%20Gln-His-Ser%20tripeptide&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Cautereels,%20Julie&rft.date=2020-06-30&rft.volume=34&rft.issue=12&rft.spage=e8778&rft.pages=e8778-&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.8778&rft_dat=%3Cpubmed_hal_p%3E32144813%3C/pubmed_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32144813&rfr_iscdi=true