Loading…
Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide
Both amide bond protonation triggering peptide fragmentations and the controversial b -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in...
Saved in:
Published in: | Rapid communications in mass spectrometry 2020-06, Vol.34 (12), p.e8778 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3 |
container_end_page | |
container_issue | 12 |
container_start_page | e8778 |
container_title | Rapid communications in mass spectrometry |
container_volume | 34 |
creator | Cautereels, Julie Giribaldi, Julien Enjalbal, Christine Blockhuys, Frank |
description | Both amide bond protonation triggering peptide fragmentations and the controversial b
-ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b
-ion formation was investigated, focusing on the QHS model tripeptide.
To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b
-ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS
and MS
tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS
) method was used to predict fragmentation patterns.
Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b
-ions using MS
and MS
mass spectra, the calculations indicated that the QH b
-ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation.
In contrast to glycine-histidine-containing b
-ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides. |
doi_str_mv | 10.1002/rcm.8778 |
format | article |
fullrecord | <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04016788v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32144813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4Mobk7BTyB51IfOXNOuqW9j6CYMRNTnck1TF2makmRCP4Df25bpnu743-8O7kfINbA5MBbfO2nmIsvECZkCy7OIxRxOyZTlKUQJ5GJCLrz_Ygwgjdk5mfAYkkQAn5Kf1z22YW-o3CmjJTbUoPfUd0oGZ40Krn-gy5LqVgdtqQ_7qqe2piWNaaRtS2vrDIaxM0rusNXe-DGkYaeo1-1n09PO2WBbDKqi66aNNtpHb2ognO5UF3SlLslZjY1XV391Rj6eHt9Xm2j7sn5eLbeRhDjnUc4XZZ2iLDOsEgSVDL_yBWdY5ZlI4jjHVKRlDVXFhEBUSZ7KTMgUOMphIPmM3B3u7rApOqcNur6wqIvNcluMGUsYLDIhvmFgbw-sdNZ7p-rjArBitF4M1ovR-oDeHNBuXxpVHcF_zfwXPrt-Mg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Cautereels, Julie ; Giribaldi, Julien ; Enjalbal, Christine ; Blockhuys, Frank</creator><creatorcontrib>Cautereels, Julie ; Giribaldi, Julien ; Enjalbal, Christine ; Blockhuys, Frank</creatorcontrib><description>Both amide bond protonation triggering peptide fragmentations and the controversial b
-ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b
-ion formation was investigated, focusing on the QHS model tripeptide.
To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b
-ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS
and MS
tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS
) method was used to predict fragmentation patterns.
Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b
-ions using MS
and MS
mass spectra, the calculations indicated that the QH b
-ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation.
In contrast to glycine-histidine-containing b
-ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.8778</identifier><identifier>PMID: 32144813</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Amides ; Amides - chemistry ; Chemical Sciences ; Diketopiperazines ; Diketopiperazines - chemistry ; Glycine ; Glycine - chemistry ; Histidine ; Histidine - chemistry ; Ions ; Ions - chemistry ; MAss Spectrometry ; Mass Spectrometry - methods ; Oligopeptides ; Oligopeptides - analysis ; Oligopeptides - chemistry ; Oxazolone ; Oxazolone - chemistry ; Protons ; Thermodynamics</subject><ispartof>Rapid communications in mass spectrometry, 2020-06, Vol.34 (12), p.e8778</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</citedby><cites>FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</cites><orcidid>0000-0002-2201-6682 ; 0000-0003-4646-4583 ; 0000-0002-4273-3080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32144813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04016788$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cautereels, Julie</creatorcontrib><creatorcontrib>Giribaldi, Julien</creatorcontrib><creatorcontrib>Enjalbal, Christine</creatorcontrib><creatorcontrib>Blockhuys, Frank</creatorcontrib><title>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun Mass Spectrom</addtitle><description>Both amide bond protonation triggering peptide fragmentations and the controversial b
-ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b
-ion formation was investigated, focusing on the QHS model tripeptide.
To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b
-ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS
and MS
tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS
) method was used to predict fragmentation patterns.
Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b
-ions using MS
and MS
mass spectra, the calculations indicated that the QH b
-ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation.
In contrast to glycine-histidine-containing b
-ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.</description><subject>Amides</subject><subject>Amides - chemistry</subject><subject>Chemical Sciences</subject><subject>Diketopiperazines</subject><subject>Diketopiperazines - chemistry</subject><subject>Glycine</subject><subject>Glycine - chemistry</subject><subject>Histidine</subject><subject>Histidine - chemistry</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>MAss Spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Oligopeptides</subject><subject>Oligopeptides - analysis</subject><subject>Oligopeptides - chemistry</subject><subject>Oxazolone</subject><subject>Oxazolone - chemistry</subject><subject>Protons</subject><subject>Thermodynamics</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4Mobk7BTyB51IfOXNOuqW9j6CYMRNTnck1TF2makmRCP4Df25bpnu743-8O7kfINbA5MBbfO2nmIsvECZkCy7OIxRxOyZTlKUQJ5GJCLrz_Ygwgjdk5mfAYkkQAn5Kf1z22YW-o3CmjJTbUoPfUd0oGZ40Krn-gy5LqVgdtqQ_7qqe2piWNaaRtS2vrDIaxM0rusNXe-DGkYaeo1-1n09PO2WBbDKqi66aNNtpHb2ognO5UF3SlLslZjY1XV391Rj6eHt9Xm2j7sn5eLbeRhDjnUc4XZZ2iLDOsEgSVDL_yBWdY5ZlI4jjHVKRlDVXFhEBUSZ7KTMgUOMphIPmM3B3u7rApOqcNur6wqIvNcluMGUsYLDIhvmFgbw-sdNZ7p-rjArBitF4M1ovR-oDeHNBuXxpVHcF_zfwXPrt-Mg</recordid><startdate>20200630</startdate><enddate>20200630</enddate><creator>Cautereels, Julie</creator><creator>Giribaldi, Julien</creator><creator>Enjalbal, Christine</creator><creator>Blockhuys, Frank</creator><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2201-6682</orcidid><orcidid>https://orcid.org/0000-0003-4646-4583</orcidid><orcidid>https://orcid.org/0000-0002-4273-3080</orcidid></search><sort><creationdate>20200630</creationdate><title>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</title><author>Cautereels, Julie ; Giribaldi, Julien ; Enjalbal, Christine ; Blockhuys, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amides</topic><topic>Amides - chemistry</topic><topic>Chemical Sciences</topic><topic>Diketopiperazines</topic><topic>Diketopiperazines - chemistry</topic><topic>Glycine</topic><topic>Glycine - chemistry</topic><topic>Histidine</topic><topic>Histidine - chemistry</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>MAss Spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Oligopeptides</topic><topic>Oligopeptides - analysis</topic><topic>Oligopeptides - chemistry</topic><topic>Oxazolone</topic><topic>Oxazolone - chemistry</topic><topic>Protons</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cautereels, Julie</creatorcontrib><creatorcontrib>Giribaldi, Julien</creatorcontrib><creatorcontrib>Enjalbal, Christine</creatorcontrib><creatorcontrib>Blockhuys, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cautereels, Julie</au><au>Giribaldi, Julien</au><au>Enjalbal, Christine</au><au>Blockhuys, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun Mass Spectrom</addtitle><date>2020-06-30</date><risdate>2020</risdate><volume>34</volume><issue>12</issue><spage>e8778</spage><pages>e8778-</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Both amide bond protonation triggering peptide fragmentations and the controversial b
-ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b
-ion formation was investigated, focusing on the QHS model tripeptide.
To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b
-ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS
and MS
tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS
) method was used to predict fragmentation patterns.
Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b
-ions using MS
and MS
mass spectra, the calculations indicated that the QH b
-ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation.
In contrast to glycine-histidine-containing b
-ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.</abstract><cop>England</cop><pub>Wiley</pub><pmid>32144813</pmid><doi>10.1002/rcm.8778</doi><orcidid>https://orcid.org/0000-0002-2201-6682</orcidid><orcidid>https://orcid.org/0000-0003-4646-4583</orcidid><orcidid>https://orcid.org/0000-0002-4273-3080</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-4198 |
ispartof | Rapid communications in mass spectrometry, 2020-06, Vol.34 (12), p.e8778 |
issn | 0951-4198 1097-0231 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04016788v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amides Amides - chemistry Chemical Sciences Diketopiperazines Diketopiperazines - chemistry Glycine Glycine - chemistry Histidine Histidine - chemistry Ions Ions - chemistry MAss Spectrometry Mass Spectrometry - methods Oligopeptides Oligopeptides - analysis Oligopeptides - chemistry Oxazolone Oxazolone - chemistry Protons Thermodynamics |
title | Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20chemical%20mass%20spectrometry:%20Ab%20initio%20study%20of%20b%202%20-ion%20formation%20mechanisms%20for%20the%20singly%20protonated%20Gln-His-Ser%20tripeptide&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Cautereels,%20Julie&rft.date=2020-06-30&rft.volume=34&rft.issue=12&rft.spage=e8778&rft.pages=e8778-&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.8778&rft_dat=%3Cpubmed_hal_p%3E32144813%3C/pubmed_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1293-936bf5acb7ad4a1e40973630ad9784229a585bf1dd088aae495c78c513ac85bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32144813&rfr_iscdi=true |