Loading…

Study of hygroscopic stresses in asymmetric biocomposite laminates

The hygro-mechanical behaviour of a bio-sourced composite material (MAPP/flax) is experimentally investigated through the characterization of its moisture diffusion and elastic properties, as well as the in-plane hygroscopic swelling of a unidirectional ply sequence and curvature in the case of an a...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2019-01, Vol.169, p.7-15
Main Authors: Péron, Mael, Célino, Amandine, Castro, Mickael, Jacquemin, Frédéric, Le Duigou, Antoine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-c4ec3b1a6b11c81e1d7a273ee35a619f30f2be60d1f69f25ee3927bfcc81de4c3
cites cdi_FETCH-LOGICAL-c471t-c4ec3b1a6b11c81e1d7a273ee35a619f30f2be60d1f69f25ee3927bfcc81de4c3
container_end_page 15
container_issue
container_start_page 7
container_title Composites science and technology
container_volume 169
creator Péron, Mael
Célino, Amandine
Castro, Mickael
Jacquemin, Frédéric
Le Duigou, Antoine
description The hygro-mechanical behaviour of a bio-sourced composite material (MAPP/flax) is experimentally investigated through the characterization of its moisture diffusion and elastic properties, as well as the in-plane hygroscopic swelling of a unidirectional ply sequence and curvature in the case of an asymmetric lay-up sequence. From these considerations, we propose a hygro-mechanical model for the material behaviour, based on a Fickian diffusion model solved in 1D with a finite difference method, and coupled to a modified mechanical model based on laminate theory. The proposed model takes into account the evolution of the mechanical properties as well as hygroscopic swelling during moisture uptake to predict the stress state during water sorption of a biocomposite. Results show that sorption kinetics is dependent on the lay-up sequence of the biocomposite structure. The stress state determined from the thickness of the asymmetric lay-up shows that most of the plies (approx. 75% of the whole laminate) are subjected to a compressive stress along their in-plane direction transverse to the fibres. This stress distribution may lead to a decrease in the free-volume of the material, thus modifying the hygroscopic properties by reducing its maximum moisture content compared to the unidirectional laminate (the stress distribution being equal to zero for this latter laminate when saturation is reached).
doi_str_mv 10.1016/j.compscitech.2018.10.027
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04058128v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353818321602</els_id><sourcerecordid>2165064951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-c4ec3b1a6b11c81e1d7a273ee35a619f30f2be60d1f69f25ee3927bfcc81de4c3</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-h4onD62ZtE3b47r4DxY8qOeQplM3ZdvUJLuw396Uinj0ksCb37yZeYRcA02AAr_rEmX60SntUW0TRqEMekJZcUIWUBZVDDSnp2RBGedxmqflOblwrqOUFnnFFuT-ze-bY2TaaHv8tMYpM2oVOW_ROXSRHiLpjn2P3ga51maaZlyYFu1krwfp0V2Ss1buHF79_Evy8fjwvn6ON69PL-vVJlZZAT68qNIaJK8BVAkITSFZkSKmueRQtSltWY2cNtDyqmV5KFSsqFsV4AYzlS7J7ey7lTsxWt1LexRGavG82ohJoxnNS2DlAQJ7M7OjNV97dF50Zm-HsJ5gwHPKsyqfqGqmVLjcWWx_bYGKKV7RiT_xiineqRTiDb3ruRfDyQeNVgQKB4WNtqi8aIz-h8s3vTKKOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165064951</pqid></control><display><type>article</type><title>Study of hygroscopic stresses in asymmetric biocomposite laminates</title><source>ScienceDirect Freedom Collection</source><creator>Péron, Mael ; Célino, Amandine ; Castro, Mickael ; Jacquemin, Frédéric ; Le Duigou, Antoine</creator><creatorcontrib>Péron, Mael ; Célino, Amandine ; Castro, Mickael ; Jacquemin, Frédéric ; Le Duigou, Antoine</creatorcontrib><description>The hygro-mechanical behaviour of a bio-sourced composite material (MAPP/flax) is experimentally investigated through the characterization of its moisture diffusion and elastic properties, as well as the in-plane hygroscopic swelling of a unidirectional ply sequence and curvature in the case of an asymmetric lay-up sequence. From these considerations, we propose a hygro-mechanical model for the material behaviour, based on a Fickian diffusion model solved in 1D with a finite difference method, and coupled to a modified mechanical model based on laminate theory. The proposed model takes into account the evolution of the mechanical properties as well as hygroscopic swelling during moisture uptake to predict the stress state during water sorption of a biocomposite. Results show that sorption kinetics is dependent on the lay-up sequence of the biocomposite structure. The stress state determined from the thickness of the asymmetric lay-up shows that most of the plies (approx. 75% of the whole laminate) are subjected to a compressive stress along their in-plane direction transverse to the fibres. This stress distribution may lead to a decrease in the free-volume of the material, thus modifying the hygroscopic properties by reducing its maximum moisture content compared to the unidirectional laminate (the stress distribution being equal to zero for this latter laminate when saturation is reached).</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.10.027</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Asymmetrical laminate ; Asymmetry ; Biomedical materials ; Composite materials ; Compressive properties ; Curvature ; Elastic properties ; Engineering Sciences ; Finite difference method ; Flax ; Hygroscopic stress ; Kinetics ; Laminates ; Lay-up ; Layers ; Mechanical properties ; Mechanics ; Mechanics of materials ; Moisture ; Moisture content ; Natural fibre ; Reaction kinetics ; Sorption ; Stress concentration ; Stress distribution ; Swelling</subject><ispartof>Composites science and technology, 2019-01, Vol.169, p.7-15</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 5, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-c4ec3b1a6b11c81e1d7a273ee35a619f30f2be60d1f69f25ee3927bfcc81de4c3</citedby><cites>FETCH-LOGICAL-c471t-c4ec3b1a6b11c81e1d7a273ee35a619f30f2be60d1f69f25ee3927bfcc81de4c3</cites><orcidid>0000-0002-6782-3066 ; 0000-0002-7361-3444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04058128$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Péron, Mael</creatorcontrib><creatorcontrib>Célino, Amandine</creatorcontrib><creatorcontrib>Castro, Mickael</creatorcontrib><creatorcontrib>Jacquemin, Frédéric</creatorcontrib><creatorcontrib>Le Duigou, Antoine</creatorcontrib><title>Study of hygroscopic stresses in asymmetric biocomposite laminates</title><title>Composites science and technology</title><description>The hygro-mechanical behaviour of a bio-sourced composite material (MAPP/flax) is experimentally investigated through the characterization of its moisture diffusion and elastic properties, as well as the in-plane hygroscopic swelling of a unidirectional ply sequence and curvature in the case of an asymmetric lay-up sequence. From these considerations, we propose a hygro-mechanical model for the material behaviour, based on a Fickian diffusion model solved in 1D with a finite difference method, and coupled to a modified mechanical model based on laminate theory. The proposed model takes into account the evolution of the mechanical properties as well as hygroscopic swelling during moisture uptake to predict the stress state during water sorption of a biocomposite. Results show that sorption kinetics is dependent on the lay-up sequence of the biocomposite structure. The stress state determined from the thickness of the asymmetric lay-up shows that most of the plies (approx. 75% of the whole laminate) are subjected to a compressive stress along their in-plane direction transverse to the fibres. This stress distribution may lead to a decrease in the free-volume of the material, thus modifying the hygroscopic properties by reducing its maximum moisture content compared to the unidirectional laminate (the stress distribution being equal to zero for this latter laminate when saturation is reached).</description><subject>Asymmetrical laminate</subject><subject>Asymmetry</subject><subject>Biomedical materials</subject><subject>Composite materials</subject><subject>Compressive properties</subject><subject>Curvature</subject><subject>Elastic properties</subject><subject>Engineering Sciences</subject><subject>Finite difference method</subject><subject>Flax</subject><subject>Hygroscopic stress</subject><subject>Kinetics</subject><subject>Laminates</subject><subject>Lay-up</subject><subject>Layers</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Moisture</subject><subject>Moisture content</subject><subject>Natural fibre</subject><subject>Reaction kinetics</subject><subject>Sorption</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Swelling</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-h4onD62ZtE3b47r4DxY8qOeQplM3ZdvUJLuw396Uinj0ksCb37yZeYRcA02AAr_rEmX60SntUW0TRqEMekJZcUIWUBZVDDSnp2RBGedxmqflOblwrqOUFnnFFuT-ze-bY2TaaHv8tMYpM2oVOW_ROXSRHiLpjn2P3ga51maaZlyYFu1krwfp0V2Ss1buHF79_Evy8fjwvn6ON69PL-vVJlZZAT68qNIaJK8BVAkITSFZkSKmueRQtSltWY2cNtDyqmV5KFSsqFsV4AYzlS7J7ey7lTsxWt1LexRGavG82ohJoxnNS2DlAQJ7M7OjNV97dF50Zm-HsJ5gwHPKsyqfqGqmVLjcWWx_bYGKKV7RiT_xiineqRTiDb3ruRfDyQeNVgQKB4WNtqi8aIz-h8s3vTKKOA</recordid><startdate>20190105</startdate><enddate>20190105</enddate><creator>Péron, Mael</creator><creator>Célino, Amandine</creator><creator>Castro, Mickael</creator><creator>Jacquemin, Frédéric</creator><creator>Le Duigou, Antoine</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6782-3066</orcidid><orcidid>https://orcid.org/0000-0002-7361-3444</orcidid></search><sort><creationdate>20190105</creationdate><title>Study of hygroscopic stresses in asymmetric biocomposite laminates</title><author>Péron, Mael ; Célino, Amandine ; Castro, Mickael ; Jacquemin, Frédéric ; Le Duigou, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-c4ec3b1a6b11c81e1d7a273ee35a619f30f2be60d1f69f25ee3927bfcc81de4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymmetrical laminate</topic><topic>Asymmetry</topic><topic>Biomedical materials</topic><topic>Composite materials</topic><topic>Compressive properties</topic><topic>Curvature</topic><topic>Elastic properties</topic><topic>Engineering Sciences</topic><topic>Finite difference method</topic><topic>Flax</topic><topic>Hygroscopic stress</topic><topic>Kinetics</topic><topic>Laminates</topic><topic>Lay-up</topic><topic>Layers</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Moisture</topic><topic>Moisture content</topic><topic>Natural fibre</topic><topic>Reaction kinetics</topic><topic>Sorption</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Péron, Mael</creatorcontrib><creatorcontrib>Célino, Amandine</creatorcontrib><creatorcontrib>Castro, Mickael</creatorcontrib><creatorcontrib>Jacquemin, Frédéric</creatorcontrib><creatorcontrib>Le Duigou, Antoine</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Péron, Mael</au><au>Célino, Amandine</au><au>Castro, Mickael</au><au>Jacquemin, Frédéric</au><au>Le Duigou, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of hygroscopic stresses in asymmetric biocomposite laminates</atitle><jtitle>Composites science and technology</jtitle><date>2019-01-05</date><risdate>2019</risdate><volume>169</volume><spage>7</spage><epage>15</epage><pages>7-15</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>The hygro-mechanical behaviour of a bio-sourced composite material (MAPP/flax) is experimentally investigated through the characterization of its moisture diffusion and elastic properties, as well as the in-plane hygroscopic swelling of a unidirectional ply sequence and curvature in the case of an asymmetric lay-up sequence. From these considerations, we propose a hygro-mechanical model for the material behaviour, based on a Fickian diffusion model solved in 1D with a finite difference method, and coupled to a modified mechanical model based on laminate theory. The proposed model takes into account the evolution of the mechanical properties as well as hygroscopic swelling during moisture uptake to predict the stress state during water sorption of a biocomposite. Results show that sorption kinetics is dependent on the lay-up sequence of the biocomposite structure. The stress state determined from the thickness of the asymmetric lay-up shows that most of the plies (approx. 75% of the whole laminate) are subjected to a compressive stress along their in-plane direction transverse to the fibres. This stress distribution may lead to a decrease in the free-volume of the material, thus modifying the hygroscopic properties by reducing its maximum moisture content compared to the unidirectional laminate (the stress distribution being equal to zero for this latter laminate when saturation is reached).</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.10.027</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6782-3066</orcidid><orcidid>https://orcid.org/0000-0002-7361-3444</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2019-01, Vol.169, p.7-15
issn 0266-3538
1879-1050
language eng
recordid cdi_hal_primary_oai_HAL_hal_04058128v1
source ScienceDirect Freedom Collection
subjects Asymmetrical laminate
Asymmetry
Biomedical materials
Composite materials
Compressive properties
Curvature
Elastic properties
Engineering Sciences
Finite difference method
Flax
Hygroscopic stress
Kinetics
Laminates
Lay-up
Layers
Mechanical properties
Mechanics
Mechanics of materials
Moisture
Moisture content
Natural fibre
Reaction kinetics
Sorption
Stress concentration
Stress distribution
Swelling
title Study of hygroscopic stresses in asymmetric biocomposite laminates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20hygroscopic%20stresses%20in%20asymmetric%20biocomposite%20laminates&rft.jtitle=Composites%20science%20and%20technology&rft.au=P%C3%A9ron,%20Mael&rft.date=2019-01-05&rft.volume=169&rft.spage=7&rft.epage=15&rft.pages=7-15&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.10.027&rft_dat=%3Cproquest_hal_p%3E2165064951%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-c4ec3b1a6b11c81e1d7a273ee35a619f30f2be60d1f69f25ee3927bfcc81de4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2165064951&rft_id=info:pmid/&rfr_iscdi=true