Loading…

THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells

Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2023-05, Vol.11 (9), p.n/a
Main Authors: Goulain, Paul, Deimert, Chris, Jeannin, Mathieu, Pirotta, Stefano, Pasek, Wojciech Julian, Wasilewski, Zbigniew, Colombelli, Raffaele, Manceau, Jean‐Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3
cites cdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced optical materials
container_volume 11
creator Goulain, Paul
Deimert, Chris
Jeannin, Mathieu
Pirotta, Stefano
Pasek, Wojciech Julian
Wasilewski, Zbigniew
Colombelli, Raffaele
Manceau, Jean‐Michel
description Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures. By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K.
doi_str_mv 10.1002/adom.202202724
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04062827v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808966905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</originalsourceid><addsrcrecordid>eNqFkMtOAjEUhidGEwmydd3ElQuwl2EuS4IKRggaIS6bTqcDQ8oUO60EVzyCiS_gs_goPImdjEF3Jk3ac_p9p83veecIdhCE-IqlatXBELsVYv_Ia2AUd9sIhuj4z_nUa5XlEkLoChL7YcNbTodvYCaNZvvd-5PRqpiDUT5fmP3uY8yMERr0lV3L3PXtGhgFMIRfn_dgk5uFuypMXlhlS7l1_kCzVKTggWmWKJlz8GhZYewKPAspyzPvJGOyFK2fvenNbm-m_WF7NBnc9XujNicx8tskjXiIkkDwrMtZnCYZxiQhQRBDP0oJhwJlnEc8yFCEfeck3ZCESSpiTljGMtL0Luu5CybpWucrprdUsZwOeyNa9aAPAxzh8BU59qJm11q9WFEaulRWF-57FEcwiqtXu47q1BTXqiy1yA5jEaRV_LSKnx7id0JcC5tciu0_NO1dT8a_7jf5hoxu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808966905</pqid></control><display><type>article</type><title>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Goulain, Paul ; Deimert, Chris ; Jeannin, Mathieu ; Pirotta, Stefano ; Pasek, Wojciech Julian ; Wasilewski, Zbigniew ; Colombelli, Raffaele ; Manceau, Jean‐Michel</creator><creatorcontrib>Goulain, Paul ; Deimert, Chris ; Jeannin, Mathieu ; Pirotta, Stefano ; Pasek, Wojciech Julian ; Wasilewski, Zbigniew ; Colombelli, Raffaele ; Manceau, Jean‐Michel</creatorcontrib><description>Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures. By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202724</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Condensed Matter ; Coupling ; Electrons ; High temperature ; intersubband ; Intersubband transitions ; Materials science ; metamaterials ; Optics ; Physics ; Polaritons ; Quantum theory ; Quantum wells ; Resonators ; terahertz</subject><ispartof>Advanced optical materials, 2023-05, Vol.11 (9), p.n/a</ispartof><rights>2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</citedby><cites>FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</cites><orcidid>0000-0001-8878-8960 ; 0000-0002-8362-4198 ; 0000-0002-0643-450X ; 0000-0002-1540-9920 ; 0000-0002-8873-832X ; 0000-0002-3546-8418 ; 0000-0001-7116-5863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04062827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goulain, Paul</creatorcontrib><creatorcontrib>Deimert, Chris</creatorcontrib><creatorcontrib>Jeannin, Mathieu</creatorcontrib><creatorcontrib>Pirotta, Stefano</creatorcontrib><creatorcontrib>Pasek, Wojciech Julian</creatorcontrib><creatorcontrib>Wasilewski, Zbigniew</creatorcontrib><creatorcontrib>Colombelli, Raffaele</creatorcontrib><creatorcontrib>Manceau, Jean‐Michel</creatorcontrib><title>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</title><title>Advanced optical materials</title><description>Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures. By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K.</description><subject>Condensed Matter</subject><subject>Coupling</subject><subject>Electrons</subject><subject>High temperature</subject><subject>intersubband</subject><subject>Intersubband transitions</subject><subject>Materials science</subject><subject>metamaterials</subject><subject>Optics</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Quantum theory</subject><subject>Quantum wells</subject><subject>Resonators</subject><subject>terahertz</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOAjEUhidGEwmydd3ElQuwl2EuS4IKRggaIS6bTqcDQ8oUO60EVzyCiS_gs_goPImdjEF3Jk3ac_p9p83veecIdhCE-IqlatXBELsVYv_Ia2AUd9sIhuj4z_nUa5XlEkLoChL7YcNbTodvYCaNZvvd-5PRqpiDUT5fmP3uY8yMERr0lV3L3PXtGhgFMIRfn_dgk5uFuypMXlhlS7l1_kCzVKTggWmWKJlz8GhZYewKPAspyzPvJGOyFK2fvenNbm-m_WF7NBnc9XujNicx8tskjXiIkkDwrMtZnCYZxiQhQRBDP0oJhwJlnEc8yFCEfeck3ZCESSpiTljGMtL0Luu5CybpWucrprdUsZwOeyNa9aAPAxzh8BU59qJm11q9WFEaulRWF-57FEcwiqtXu47q1BTXqiy1yA5jEaRV_LSKnx7id0JcC5tciu0_NO1dT8a_7jf5hoxu</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Goulain, Paul</creator><creator>Deimert, Chris</creator><creator>Jeannin, Mathieu</creator><creator>Pirotta, Stefano</creator><creator>Pasek, Wojciech Julian</creator><creator>Wasilewski, Zbigniew</creator><creator>Colombelli, Raffaele</creator><creator>Manceau, Jean‐Michel</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8878-8960</orcidid><orcidid>https://orcid.org/0000-0002-8362-4198</orcidid><orcidid>https://orcid.org/0000-0002-0643-450X</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid><orcidid>https://orcid.org/0000-0002-8873-832X</orcidid><orcidid>https://orcid.org/0000-0002-3546-8418</orcidid><orcidid>https://orcid.org/0000-0001-7116-5863</orcidid></search><sort><creationdate>20230501</creationdate><title>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</title><author>Goulain, Paul ; Deimert, Chris ; Jeannin, Mathieu ; Pirotta, Stefano ; Pasek, Wojciech Julian ; Wasilewski, Zbigniew ; Colombelli, Raffaele ; Manceau, Jean‐Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Coupling</topic><topic>Electrons</topic><topic>High temperature</topic><topic>intersubband</topic><topic>Intersubband transitions</topic><topic>Materials science</topic><topic>metamaterials</topic><topic>Optics</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Quantum theory</topic><topic>Quantum wells</topic><topic>Resonators</topic><topic>terahertz</topic><toplevel>online_resources</toplevel><creatorcontrib>Goulain, Paul</creatorcontrib><creatorcontrib>Deimert, Chris</creatorcontrib><creatorcontrib>Jeannin, Mathieu</creatorcontrib><creatorcontrib>Pirotta, Stefano</creatorcontrib><creatorcontrib>Pasek, Wojciech Julian</creatorcontrib><creatorcontrib>Wasilewski, Zbigniew</creatorcontrib><creatorcontrib>Colombelli, Raffaele</creatorcontrib><creatorcontrib>Manceau, Jean‐Michel</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulain, Paul</au><au>Deimert, Chris</au><au>Jeannin, Mathieu</au><au>Pirotta, Stefano</au><au>Pasek, Wojciech Julian</au><au>Wasilewski, Zbigniew</au><au>Colombelli, Raffaele</au><au>Manceau, Jean‐Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</atitle><jtitle>Advanced optical materials</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>11</volume><issue>9</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures. By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202724</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8878-8960</orcidid><orcidid>https://orcid.org/0000-0002-8362-4198</orcidid><orcidid>https://orcid.org/0000-0002-0643-450X</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid><orcidid>https://orcid.org/0000-0002-8873-832X</orcidid><orcidid>https://orcid.org/0000-0002-3546-8418</orcidid><orcidid>https://orcid.org/0000-0001-7116-5863</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-05, Vol.11 (9), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_hal_primary_oai_HAL_hal_04062827v1
source Wiley-Blackwell Read & Publish Collection
subjects Condensed Matter
Coupling
Electrons
High temperature
intersubband
Intersubband transitions
Materials science
metamaterials
Optics
Physics
Polaritons
Quantum theory
Quantum wells
Resonators
terahertz
title THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THz%20Ultra%E2%80%90Strong%20Light%E2%80%93Matter%20Coupling%20up%20to%20200%C2%A0K%20with%20Continuously%E2%80%90Graded%20Parabolic%20Quantum%20Wells&rft.jtitle=Advanced%20optical%20materials&rft.au=Goulain,%20Paul&rft.date=2023-05-01&rft.volume=11&rft.issue=9&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202724&rft_dat=%3Cproquest_hal_p%3E2808966905%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808966905&rft_id=info:pmid/&rfr_iscdi=true