Loading…
THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells
Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated...
Saved in:
Published in: | Advanced optical materials 2023-05, Vol.11 (9), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 11 |
creator | Goulain, Paul Deimert, Chris Jeannin, Mathieu Pirotta, Stefano Pasek, Wojciech Julian Wasilewski, Zbigniew Colombelli, Raffaele Manceau, Jean‐Michel |
description | Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures.
By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K. |
doi_str_mv | 10.1002/adom.202202724 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04062827v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808966905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</originalsourceid><addsrcrecordid>eNqFkMtOAjEUhidGEwmydd3ElQuwl2EuS4IKRggaIS6bTqcDQ8oUO60EVzyCiS_gs_goPImdjEF3Jk3ac_p9p83veecIdhCE-IqlatXBELsVYv_Ia2AUd9sIhuj4z_nUa5XlEkLoChL7YcNbTodvYCaNZvvd-5PRqpiDUT5fmP3uY8yMERr0lV3L3PXtGhgFMIRfn_dgk5uFuypMXlhlS7l1_kCzVKTggWmWKJlz8GhZYewKPAspyzPvJGOyFK2fvenNbm-m_WF7NBnc9XujNicx8tskjXiIkkDwrMtZnCYZxiQhQRBDP0oJhwJlnEc8yFCEfeck3ZCESSpiTljGMtL0Luu5CybpWucrprdUsZwOeyNa9aAPAxzh8BU59qJm11q9WFEaulRWF-57FEcwiqtXu47q1BTXqiy1yA5jEaRV_LSKnx7id0JcC5tciu0_NO1dT8a_7jf5hoxu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808966905</pqid></control><display><type>article</type><title>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Goulain, Paul ; Deimert, Chris ; Jeannin, Mathieu ; Pirotta, Stefano ; Pasek, Wojciech Julian ; Wasilewski, Zbigniew ; Colombelli, Raffaele ; Manceau, Jean‐Michel</creator><creatorcontrib>Goulain, Paul ; Deimert, Chris ; Jeannin, Mathieu ; Pirotta, Stefano ; Pasek, Wojciech Julian ; Wasilewski, Zbigniew ; Colombelli, Raffaele ; Manceau, Jean‐Michel</creatorcontrib><description>Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures.
By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202724</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Condensed Matter ; Coupling ; Electrons ; High temperature ; intersubband ; Intersubband transitions ; Materials science ; metamaterials ; Optics ; Physics ; Polaritons ; Quantum theory ; Quantum wells ; Resonators ; terahertz</subject><ispartof>Advanced optical materials, 2023-05, Vol.11 (9), p.n/a</ispartof><rights>2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</citedby><cites>FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</cites><orcidid>0000-0001-8878-8960 ; 0000-0002-8362-4198 ; 0000-0002-0643-450X ; 0000-0002-1540-9920 ; 0000-0002-8873-832X ; 0000-0002-3546-8418 ; 0000-0001-7116-5863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04062827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goulain, Paul</creatorcontrib><creatorcontrib>Deimert, Chris</creatorcontrib><creatorcontrib>Jeannin, Mathieu</creatorcontrib><creatorcontrib>Pirotta, Stefano</creatorcontrib><creatorcontrib>Pasek, Wojciech Julian</creatorcontrib><creatorcontrib>Wasilewski, Zbigniew</creatorcontrib><creatorcontrib>Colombelli, Raffaele</creatorcontrib><creatorcontrib>Manceau, Jean‐Michel</creatorcontrib><title>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</title><title>Advanced optical materials</title><description>Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures.
By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K.</description><subject>Condensed Matter</subject><subject>Coupling</subject><subject>Electrons</subject><subject>High temperature</subject><subject>intersubband</subject><subject>Intersubband transitions</subject><subject>Materials science</subject><subject>metamaterials</subject><subject>Optics</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Quantum theory</subject><subject>Quantum wells</subject><subject>Resonators</subject><subject>terahertz</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMtOAjEUhidGEwmydd3ElQuwl2EuS4IKRggaIS6bTqcDQ8oUO60EVzyCiS_gs_goPImdjEF3Jk3ac_p9p83veecIdhCE-IqlatXBELsVYv_Ia2AUd9sIhuj4z_nUa5XlEkLoChL7YcNbTodvYCaNZvvd-5PRqpiDUT5fmP3uY8yMERr0lV3L3PXtGhgFMIRfn_dgk5uFuypMXlhlS7l1_kCzVKTggWmWKJlz8GhZYewKPAspyzPvJGOyFK2fvenNbm-m_WF7NBnc9XujNicx8tskjXiIkkDwrMtZnCYZxiQhQRBDP0oJhwJlnEc8yFCEfeck3ZCESSpiTljGMtL0Luu5CybpWucrprdUsZwOeyNa9aAPAxzh8BU59qJm11q9WFEaulRWF-57FEcwiqtXu47q1BTXqiy1yA5jEaRV_LSKnx7id0JcC5tciu0_NO1dT8a_7jf5hoxu</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Goulain, Paul</creator><creator>Deimert, Chris</creator><creator>Jeannin, Mathieu</creator><creator>Pirotta, Stefano</creator><creator>Pasek, Wojciech Julian</creator><creator>Wasilewski, Zbigniew</creator><creator>Colombelli, Raffaele</creator><creator>Manceau, Jean‐Michel</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8878-8960</orcidid><orcidid>https://orcid.org/0000-0002-8362-4198</orcidid><orcidid>https://orcid.org/0000-0002-0643-450X</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid><orcidid>https://orcid.org/0000-0002-8873-832X</orcidid><orcidid>https://orcid.org/0000-0002-3546-8418</orcidid><orcidid>https://orcid.org/0000-0001-7116-5863</orcidid></search><sort><creationdate>20230501</creationdate><title>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</title><author>Goulain, Paul ; Deimert, Chris ; Jeannin, Mathieu ; Pirotta, Stefano ; Pasek, Wojciech Julian ; Wasilewski, Zbigniew ; Colombelli, Raffaele ; Manceau, Jean‐Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Coupling</topic><topic>Electrons</topic><topic>High temperature</topic><topic>intersubband</topic><topic>Intersubband transitions</topic><topic>Materials science</topic><topic>metamaterials</topic><topic>Optics</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Quantum theory</topic><topic>Quantum wells</topic><topic>Resonators</topic><topic>terahertz</topic><toplevel>online_resources</toplevel><creatorcontrib>Goulain, Paul</creatorcontrib><creatorcontrib>Deimert, Chris</creatorcontrib><creatorcontrib>Jeannin, Mathieu</creatorcontrib><creatorcontrib>Pirotta, Stefano</creatorcontrib><creatorcontrib>Pasek, Wojciech Julian</creatorcontrib><creatorcontrib>Wasilewski, Zbigniew</creatorcontrib><creatorcontrib>Colombelli, Raffaele</creatorcontrib><creatorcontrib>Manceau, Jean‐Michel</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goulain, Paul</au><au>Deimert, Chris</au><au>Jeannin, Mathieu</au><au>Pirotta, Stefano</au><au>Pasek, Wojciech Julian</au><au>Wasilewski, Zbigniew</au><au>Colombelli, Raffaele</au><au>Manceau, Jean‐Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells</atitle><jtitle>Advanced optical materials</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>11</volume><issue>9</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Continuously graded parabolic quantum wells with excellent optical performances are used to overcome the low‐frequency and thermal limitations of square quantum wells at terahertz (THz) frequencies. The formation of microcavity intersubband polaritons at frequencies as low as 1.8 THz is demonstrated, with a sustained ultra‐strong coupling regime up to a temperature of 200 K. Thanks to the excellent intersubband transition linewidth, polaritons present quality factors up to 17. It is additionally shown that the ultra‐strong coupling regime is preserved when the active region is embedded in sub‐wavelength resonators, with an estimated relative strength η = ΩR/ω0 = 0.12. This represents an important milestone for future studies of quantum vacuum radiation because such resonators can be optically modulated at ultrafast rates, possibly leading to the generation of non‐classical light via the dynamic Casimir effect. Finally, with an effective volume of 2×10−6λ03$2{\bm{ \times }}{10^{{\bm{ - }}6}}\lambda _0^3$, it is estimated that fewer than 3000 electrons per resonator are ultra‐strongly coupled to the quantized electromagnetic mode, proving it is also a promising approach to explore few‐electron polaritonic systems operating at relatively high temperatures.
By faithfully implementing continuously graded alloy semiconductor, a stack of doped parabolic quantum wells is grown. It overcomes the classic limitation of square quantum wells and shows excellent optical performances in terms of linewidth and temperature operation. When placed at the vicinity of sub‐wavelength resonators, it operates in the ultra‐strong coupling regime up to 200 K.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202724</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8878-8960</orcidid><orcidid>https://orcid.org/0000-0002-8362-4198</orcidid><orcidid>https://orcid.org/0000-0002-0643-450X</orcidid><orcidid>https://orcid.org/0000-0002-1540-9920</orcidid><orcidid>https://orcid.org/0000-0002-8873-832X</orcidid><orcidid>https://orcid.org/0000-0002-3546-8418</orcidid><orcidid>https://orcid.org/0000-0001-7116-5863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2023-05, Vol.11 (9), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04062827v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Condensed Matter Coupling Electrons High temperature intersubband Intersubband transitions Materials science metamaterials Optics Physics Polaritons Quantum theory Quantum wells Resonators terahertz |
title | THz Ultra‐Strong Light–Matter Coupling up to 200 K with Continuously‐Graded Parabolic Quantum Wells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THz%20Ultra%E2%80%90Strong%20Light%E2%80%93Matter%20Coupling%20up%20to%20200%C2%A0K%20with%20Continuously%E2%80%90Graded%20Parabolic%20Quantum%20Wells&rft.jtitle=Advanced%20optical%20materials&rft.au=Goulain,%20Paul&rft.date=2023-05-01&rft.volume=11&rft.issue=9&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202724&rft_dat=%3Cproquest_hal_p%3E2808966905%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3914-3d8c71b6ecf5ca9dbf223b3669048d3c0e1fcc8c6f1824c39b5737bde9c3afaf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808966905&rft_id=info:pmid/&rfr_iscdi=true |