Loading…

Central and peripheral muscle fatigue following repeated‐sprint running in moderate and severe hypoxia

New Findings What is the central question of this study? Increasing severity of arterial hypoxaemia induces a shift towards greater central, relative to peripheral, mechanisms of fatigue during exhaustive exercise. Does a similar pattern exist for ‘all‐out’ repeated‐sprint running? What is the main...

Full description

Saved in:
Bibliographic Details
Published in:Experimental physiology 2021-01, Vol.106 (1), p.126-138
Main Authors: Townsend, Nathan, Brocherie, Franck, Millet, Grégoire P., Girard, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4886-7083d1bbdc0d269473912df0eb90ffc29327dde6cdfee55fa1fc60f64b40ffcc3
cites cdi_FETCH-LOGICAL-c4886-7083d1bbdc0d269473912df0eb90ffc29327dde6cdfee55fa1fc60f64b40ffcc3
container_end_page 138
container_issue 1
container_start_page 126
container_title Experimental physiology
container_volume 106
creator Townsend, Nathan
Brocherie, Franck
Millet, Grégoire P.
Girard, Olivier
description New Findings What is the central question of this study? Increasing severity of arterial hypoxaemia induces a shift towards greater central, relative to peripheral, mechanisms of fatigue during exhaustive exercise. Does a similar pattern exist for ‘all‐out’ repeated‐sprint running? What is the main finding and its importance? Severe normobaric hypoxia [fraction of inspired oxygen (FI,O2) = 0.13] did not induce a greater contribution from central fatigue, but indices of muscle fatigue were elevated compared with normoxia (FI,O2 = 0.21) and moderate hypoxia (FI,O2 = 0.17). This suggests a different fatigue response to repeated‐sprint running versus other exercise modalities and, consequently, that task specificity might modulate the effect of hypoxia on the central versus peripheral contribution to fatigue. We examined the effects of increasing hypoxia severity on repeated‐sprint running performance and neuromuscular fatigue. Thirteen active males completed eight sprints of 5 s (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level, SL; FI,O2 = 0.21), in moderate hypoxia (MH; FI,O2 = 0.17) and in severe hypoxia (SH; FI,O2 = 0.13). After 6 min of passive recovery, in all conditions a second set of four sprints of 5 s was conducted in normoxia. Neuromuscular function of the knee extensors was assessed at baseline (Pre‐) and 1 min after set 1 (Post‐set 1) and set 2 (Post‐set 2). In set 1, the mean distance covered in SL (22.9 ± 1.2 m) was not different to MH (22.7 ± 1.3 m; P = 0.71) but was greater than in SH (22.3 ± 1.3 m; P = 0.04). No significant differences between conditions for mean distance occurred in set 2. There was a decrease in maximal voluntary contraction torque (Δ = −31.4 ± 18.0 N m, P 
doi_str_mv 10.1113/EP088485
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04067314v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415296726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4886-7083d1bbdc0d269473912df0eb90ffc29327dde6cdfee55fa1fc60f64b40ffcc3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi1ERYe2Ek-AIrGBRYr_4jjLalQYpJHoAiR2kWNfd1wldrCTtrPjEXhGngSHaYuExOravsdH1_4QekXwOSGEvb-8wlJyWT1DK8JFU3JefXuOVripZIlFjY_Ry5RuMCYMS_4CHTNaVbVs6Art1uCnqPpCeVOMEN24g2U7zEn3UFg1ues519D34c756yLCCGoC8-vHzzRG56cizt4vHeeLIZh8e4I_tgS3EKHY7cdw79QpOrKqT3D2UE_Q1w-XX9abcvv546f1xbbUXEpR1lgyQ7rOaGyoaHjNGkKNxdA12FpNG0ZrY0BoYwGqyipitcBW8I4vfc1O0LuDd6f6Ng84qLhvg3Lt5mLbLmeY5x9hhN-SzL49sGMM32dIUzu4pKHvlYcwp5ZyUtFG1FRk9M0_6E2Yo88vyVTNaSWYFH-FOoaUItinCQhul6Tax6Qy-vpBOHcDmCfwMZoMnB-AO9fD_r-ivNgQWjeC_QanZZ1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474256386</pqid></control><display><type>article</type><title>Central and peripheral muscle fatigue following repeated‐sprint running in moderate and severe hypoxia</title><source>Wiley-Blackwell Open Access Collection</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Townsend, Nathan ; Brocherie, Franck ; Millet, Grégoire P. ; Girard, Olivier</creator><creatorcontrib>Townsend, Nathan ; Brocherie, Franck ; Millet, Grégoire P. ; Girard, Olivier</creatorcontrib><description>New Findings What is the central question of this study? Increasing severity of arterial hypoxaemia induces a shift towards greater central, relative to peripheral, mechanisms of fatigue during exhaustive exercise. Does a similar pattern exist for ‘all‐out’ repeated‐sprint running? What is the main finding and its importance? Severe normobaric hypoxia [fraction of inspired oxygen (FI,O2) = 0.13] did not induce a greater contribution from central fatigue, but indices of muscle fatigue were elevated compared with normoxia (FI,O2 = 0.21) and moderate hypoxia (FI,O2 = 0.17). This suggests a different fatigue response to repeated‐sprint running versus other exercise modalities and, consequently, that task specificity might modulate the effect of hypoxia on the central versus peripheral contribution to fatigue. We examined the effects of increasing hypoxia severity on repeated‐sprint running performance and neuromuscular fatigue. Thirteen active males completed eight sprints of 5 s (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level, SL; FI,O2 = 0.21), in moderate hypoxia (MH; FI,O2 = 0.17) and in severe hypoxia (SH; FI,O2 = 0.13). After 6 min of passive recovery, in all conditions a second set of four sprints of 5 s was conducted in normoxia. Neuromuscular function of the knee extensors was assessed at baseline (Pre‐) and 1 min after set 1 (Post‐set 1) and set 2 (Post‐set 2). In set 1, the mean distance covered in SL (22.9 ± 1.2 m) was not different to MH (22.7 ± 1.3 m; P = 0.71) but was greater than in SH (22.3 ± 1.3 m; P = 0.04). No significant differences between conditions for mean distance occurred in set 2. There was a decrease in maximal voluntary contraction torque (Δ = −31.4 ± 18.0 N m, P &lt; 0.001) and voluntary activation (%VA; Δ = −7.1 ± 5.1%, P = 0.001) from Pre‐ to Post‐set 1, but there was no effect of hypoxia. No further change from Post‐set 1 to Post‐set 2 occurred for either maximal voluntary contraction or %VA. The decrease in potentiated twitch torque in SL (Δ = −13.3 ± 5.2 N m) was not different to MH (Δ = −13.3 ± 6.3 N m) but was lower than in SH (Δ = −16.1 ± 4 N m) from Pre‐ to Post‐set 1 (interaction, P &lt; 0.003). Increasing severity of normobaric hypoxia, up to an equivalent elevation of 3600 m, can increase indices of peripheral fatigue but does not impact central fatigue after ‘all‐out’ repeated‐sprint running.</description><identifier>ISSN: 0958-0670</identifier><identifier>EISSN: 1469-445X</identifier><identifier>DOI: 10.1113/EP088485</identifier><identifier>PMID: 32557892</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Athletic Performance - physiology ; Bicycling - physiology ; central fatigue ; Contraction ; Exercise - physiology ; Exercise Test ; Fatigue ; Humanities and Social Sciences ; Humans ; Hypoxia ; Hypoxia - physiopathology ; Knee - physiology ; Life Sciences ; Male ; Muscle Fatigue - physiology ; Muscle, Skeletal - physiology ; peripheral muscle fatigue ; repeated‐sprint running ; Running ; Running - physiology ; Sea level ; Sport ; Sport physiology</subject><ispartof>Experimental physiology, 2021-01, Vol.106 (1), p.126-138</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Ltd on behalf of The Physiological Society</rights><rights>2020 The Authors. Experimental Physiology published by John Wiley &amp; Sons Ltd on behalf of The Physiological Society.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4886-7083d1bbdc0d269473912df0eb90ffc29327dde6cdfee55fa1fc60f64b40ffcc3</citedby><cites>FETCH-LOGICAL-c4886-7083d1bbdc0d269473912df0eb90ffc29327dde6cdfee55fa1fc60f64b40ffcc3</cites><orcidid>0000-0001-8081-4423 ; 0000-0002-0808-7986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1113%2FEP088485$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1113%2FEP088485$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,11541,27901,27902,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32557892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://insep.hal.science/hal-04067314$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Townsend, Nathan</creatorcontrib><creatorcontrib>Brocherie, Franck</creatorcontrib><creatorcontrib>Millet, Grégoire P.</creatorcontrib><creatorcontrib>Girard, Olivier</creatorcontrib><title>Central and peripheral muscle fatigue following repeated‐sprint running in moderate and severe hypoxia</title><title>Experimental physiology</title><addtitle>Exp Physiol</addtitle><description>New Findings What is the central question of this study? Increasing severity of arterial hypoxaemia induces a shift towards greater central, relative to peripheral, mechanisms of fatigue during exhaustive exercise. Does a similar pattern exist for ‘all‐out’ repeated‐sprint running? What is the main finding and its importance? Severe normobaric hypoxia [fraction of inspired oxygen (FI,O2) = 0.13] did not induce a greater contribution from central fatigue, but indices of muscle fatigue were elevated compared with normoxia (FI,O2 = 0.21) and moderate hypoxia (FI,O2 = 0.17). This suggests a different fatigue response to repeated‐sprint running versus other exercise modalities and, consequently, that task specificity might modulate the effect of hypoxia on the central versus peripheral contribution to fatigue. We examined the effects of increasing hypoxia severity on repeated‐sprint running performance and neuromuscular fatigue. Thirteen active males completed eight sprints of 5 s (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level, SL; FI,O2 = 0.21), in moderate hypoxia (MH; FI,O2 = 0.17) and in severe hypoxia (SH; FI,O2 = 0.13). After 6 min of passive recovery, in all conditions a second set of four sprints of 5 s was conducted in normoxia. Neuromuscular function of the knee extensors was assessed at baseline (Pre‐) and 1 min after set 1 (Post‐set 1) and set 2 (Post‐set 2). In set 1, the mean distance covered in SL (22.9 ± 1.2 m) was not different to MH (22.7 ± 1.3 m; P = 0.71) but was greater than in SH (22.3 ± 1.3 m; P = 0.04). No significant differences between conditions for mean distance occurred in set 2. There was a decrease in maximal voluntary contraction torque (Δ = −31.4 ± 18.0 N m, P &lt; 0.001) and voluntary activation (%VA; Δ = −7.1 ± 5.1%, P = 0.001) from Pre‐ to Post‐set 1, but there was no effect of hypoxia. No further change from Post‐set 1 to Post‐set 2 occurred for either maximal voluntary contraction or %VA. The decrease in potentiated twitch torque in SL (Δ = −13.3 ± 5.2 N m) was not different to MH (Δ = −13.3 ± 6.3 N m) but was lower than in SH (Δ = −16.1 ± 4 N m) from Pre‐ to Post‐set 1 (interaction, P &lt; 0.003). Increasing severity of normobaric hypoxia, up to an equivalent elevation of 3600 m, can increase indices of peripheral fatigue but does not impact central fatigue after ‘all‐out’ repeated‐sprint running.</description><subject>Adult</subject><subject>Athletic Performance - physiology</subject><subject>Bicycling - physiology</subject><subject>central fatigue</subject><subject>Contraction</subject><subject>Exercise - physiology</subject><subject>Exercise Test</subject><subject>Fatigue</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - physiopathology</subject><subject>Knee - physiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Muscle Fatigue - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>peripheral muscle fatigue</subject><subject>repeated‐sprint running</subject><subject>Running</subject><subject>Running - physiology</subject><subject>Sea level</subject><subject>Sport</subject><subject>Sport physiology</subject><issn>0958-0670</issn><issn>1469-445X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kc1u1DAURi1ERYe2Ek-AIrGBRYr_4jjLalQYpJHoAiR2kWNfd1wldrCTtrPjEXhGngSHaYuExOravsdH1_4QekXwOSGEvb-8wlJyWT1DK8JFU3JefXuOVripZIlFjY_Ry5RuMCYMS_4CHTNaVbVs6Art1uCnqPpCeVOMEN24g2U7zEn3UFg1ues519D34c756yLCCGoC8-vHzzRG56cizt4vHeeLIZh8e4I_tgS3EKHY7cdw79QpOrKqT3D2UE_Q1w-XX9abcvv546f1xbbUXEpR1lgyQ7rOaGyoaHjNGkKNxdA12FpNG0ZrY0BoYwGqyipitcBW8I4vfc1O0LuDd6f6Ng84qLhvg3Lt5mLbLmeY5x9hhN-SzL49sGMM32dIUzu4pKHvlYcwp5ZyUtFG1FRk9M0_6E2Yo88vyVTNaSWYFH-FOoaUItinCQhul6Tax6Qy-vpBOHcDmCfwMZoMnB-AO9fD_r-ivNgQWjeC_QanZZ1c</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Townsend, Nathan</creator><creator>Brocherie, Franck</creator><creator>Millet, Grégoire P.</creator><creator>Girard, Olivier</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Blackwell</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8081-4423</orcidid><orcidid>https://orcid.org/0000-0002-0808-7986</orcidid></search><sort><creationdate>20210101</creationdate><title>Central and peripheral muscle fatigue following repeated‐sprint running in moderate and severe hypoxia</title><author>Townsend, Nathan ; Brocherie, Franck ; Millet, Grégoire P. ; Girard, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4886-7083d1bbdc0d269473912df0eb90ffc29327dde6cdfee55fa1fc60f64b40ffcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Athletic Performance - physiology</topic><topic>Bicycling - physiology</topic><topic>central fatigue</topic><topic>Contraction</topic><topic>Exercise - physiology</topic><topic>Exercise Test</topic><topic>Fatigue</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - physiopathology</topic><topic>Knee - physiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Muscle Fatigue - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>peripheral muscle fatigue</topic><topic>repeated‐sprint running</topic><topic>Running</topic><topic>Running - physiology</topic><topic>Sea level</topic><topic>Sport</topic><topic>Sport physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Townsend, Nathan</creatorcontrib><creatorcontrib>Brocherie, Franck</creatorcontrib><creatorcontrib>Millet, Grégoire P.</creatorcontrib><creatorcontrib>Girard, Olivier</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Experimental physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Townsend, Nathan</au><au>Brocherie, Franck</au><au>Millet, Grégoire P.</au><au>Girard, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central and peripheral muscle fatigue following repeated‐sprint running in moderate and severe hypoxia</atitle><jtitle>Experimental physiology</jtitle><addtitle>Exp Physiol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>106</volume><issue>1</issue><spage>126</spage><epage>138</epage><pages>126-138</pages><issn>0958-0670</issn><eissn>1469-445X</eissn><abstract>New Findings What is the central question of this study? Increasing severity of arterial hypoxaemia induces a shift towards greater central, relative to peripheral, mechanisms of fatigue during exhaustive exercise. Does a similar pattern exist for ‘all‐out’ repeated‐sprint running? What is the main finding and its importance? Severe normobaric hypoxia [fraction of inspired oxygen (FI,O2) = 0.13] did not induce a greater contribution from central fatigue, but indices of muscle fatigue were elevated compared with normoxia (FI,O2 = 0.21) and moderate hypoxia (FI,O2 = 0.17). This suggests a different fatigue response to repeated‐sprint running versus other exercise modalities and, consequently, that task specificity might modulate the effect of hypoxia on the central versus peripheral contribution to fatigue. We examined the effects of increasing hypoxia severity on repeated‐sprint running performance and neuromuscular fatigue. Thirteen active males completed eight sprints of 5 s (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level, SL; FI,O2 = 0.21), in moderate hypoxia (MH; FI,O2 = 0.17) and in severe hypoxia (SH; FI,O2 = 0.13). After 6 min of passive recovery, in all conditions a second set of four sprints of 5 s was conducted in normoxia. Neuromuscular function of the knee extensors was assessed at baseline (Pre‐) and 1 min after set 1 (Post‐set 1) and set 2 (Post‐set 2). In set 1, the mean distance covered in SL (22.9 ± 1.2 m) was not different to MH (22.7 ± 1.3 m; P = 0.71) but was greater than in SH (22.3 ± 1.3 m; P = 0.04). No significant differences between conditions for mean distance occurred in set 2. There was a decrease in maximal voluntary contraction torque (Δ = −31.4 ± 18.0 N m, P &lt; 0.001) and voluntary activation (%VA; Δ = −7.1 ± 5.1%, P = 0.001) from Pre‐ to Post‐set 1, but there was no effect of hypoxia. No further change from Post‐set 1 to Post‐set 2 occurred for either maximal voluntary contraction or %VA. The decrease in potentiated twitch torque in SL (Δ = −13.3 ± 5.2 N m) was not different to MH (Δ = −13.3 ± 6.3 N m) but was lower than in SH (Δ = −16.1 ± 4 N m) from Pre‐ to Post‐set 1 (interaction, P &lt; 0.003). Increasing severity of normobaric hypoxia, up to an equivalent elevation of 3600 m, can increase indices of peripheral fatigue but does not impact central fatigue after ‘all‐out’ repeated‐sprint running.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32557892</pmid><doi>10.1113/EP088485</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8081-4423</orcidid><orcidid>https://orcid.org/0000-0002-0808-7986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0958-0670
ispartof Experimental physiology, 2021-01, Vol.106 (1), p.126-138
issn 0958-0670
1469-445X
language eng
recordid cdi_hal_primary_oai_HAL_hal_04067314v1
source Wiley-Blackwell Open Access Collection; Wiley-Blackwell Read & Publish Collection
subjects Adult
Athletic Performance - physiology
Bicycling - physiology
central fatigue
Contraction
Exercise - physiology
Exercise Test
Fatigue
Humanities and Social Sciences
Humans
Hypoxia
Hypoxia - physiopathology
Knee - physiology
Life Sciences
Male
Muscle Fatigue - physiology
Muscle, Skeletal - physiology
peripheral muscle fatigue
repeated‐sprint running
Running
Running - physiology
Sea level
Sport
Sport physiology
title Central and peripheral muscle fatigue following repeated‐sprint running in moderate and severe hypoxia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20and%20peripheral%20muscle%20fatigue%20following%20repeated%E2%80%90sprint%20running%20in%20moderate%20and%20severe%20hypoxia&rft.jtitle=Experimental%20physiology&rft.au=Townsend,%20Nathan&rft.date=2021-01-01&rft.volume=106&rft.issue=1&rft.spage=126&rft.epage=138&rft.pages=126-138&rft.issn=0958-0670&rft.eissn=1469-445X&rft_id=info:doi/10.1113/EP088485&rft_dat=%3Cproquest_hal_p%3E2415296726%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4886-7083d1bbdc0d269473912df0eb90ffc29327dde6cdfee55fa1fc60f64b40ffcc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2474256386&rft_id=info:pmid/32557892&rfr_iscdi=true