Loading…
An interval-valued recursive estimation framework for linearly parameterized systems
This paper proposes a recursive interval-valued estimation framework for identifying the parameters of linearly parameterized systems which may be slowly time-varying. It is assumed that the model error (which may consist in measurement noise or model mismatch or both) is unknown but lies at each ti...
Saved in:
Published in: | Systems & control letters 2022-10, Vol.168, p.105345, Article 105345 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a recursive interval-valued estimation framework for identifying the parameters of linearly parameterized systems which may be slowly time-varying. It is assumed that the model error (which may consist in measurement noise or model mismatch or both) is unknown but lies at each time instant in a known interval. In this context, the proposed method relies on bounding the error generated by a given reference point-valued recursive estimator, for example, the well-known recursive least squares algorithm. We discuss the trade-off between computational complexity and tightness of the estimated parametric interval. |
---|---|
ISSN: | 0167-6911 1872-7956 |
DOI: | 10.1016/j.sysconle.2022.105345 |