Loading…

Temperature dependence of thermodynamic, dynamical, and dielectric properties of water models

We investigate the temperature dependence of thermodynamic (density and isobaric heat capacity), dynamical (self-diffusion coefficient and shear viscosity), and dielectric properties of several water models, such as the commonly employed TIP3P water model, the well-established four-point water model...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2022-03, Vol.156 (12), p.126101-126101
Main Authors: Morozova, Tatiana I., García, Nicolás A., Barrat, Jean-Louis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the temperature dependence of thermodynamic (density and isobaric heat capacity), dynamical (self-diffusion coefficient and shear viscosity), and dielectric properties of several water models, such as the commonly employed TIP3P water model, the well-established four-point water model TIP4P-2005, and the recently developed four-point water model TIP4P-D. We focus on the temperature range of interest for the field of computational biophysics and soft matter (280–350 K). The four-point water models lead to a spectacularly improved agreement with experimental data, strongly suggesting that the use of more modern parameterizations should be favored compared to the more traditional TIP3P for modeling temperature-dependent phenomena in biomolecular systems.
ISSN:0021-9606
1089-7690
DOI:10.1063/5.0079003