Loading…

Visualizing Water Reduction with Diazonium Grafting on a Glassy Carbon Electrode Surface in a Water-in-Salt Electrolyte

Aqueous batteries are regaining interest, thanks to the extended working stability voltage window in a highly concentrated electrolyte, namely the water-in-salt electrolyte. A solid-electrolyte interphase (SEI) forms on the negative electrode to prevent water access to the electrode surface. However...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-05, Vol.15 (19), p.23899-23907
Main Authors: Zhu, Yachao, Droguet, Lea, Deng, Jie, Wang, Xuanze, Li, Luming, Dufil, Yannick, Deschannels, Mathieu, Jommongkol, Rossukon, Pareseecharoen, Chayaporn, Grimaud, Alexis, Tarascon, Jean-Marie, Fontaine, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a319t-609f0bad8bb8271fc6b8dd1fa302721fae45f9c247ebdb696613745d03dffc593
container_end_page 23907
container_issue 19
container_start_page 23899
container_title ACS applied materials & interfaces
container_volume 15
creator Zhu, Yachao
Droguet, Lea
Deng, Jie
Wang, Xuanze
Li, Luming
Dufil, Yannick
Deschannels, Mathieu
Jommongkol, Rossukon
Pareseecharoen, Chayaporn
Grimaud, Alexis
Tarascon, Jean-Marie
Fontaine, Olivier
description Aqueous batteries are regaining interest, thanks to the extended working stability voltage window in a highly concentrated electrolyte, namely the water-in-salt electrolyte. A solid-electrolyte interphase (SEI) forms on the negative electrode to prevent water access to the electrode surface. However, we further reported that the formed SEI layer was not uniform on the surface of the glassy carbon electrode. The SEI after passivation will also show degradation during the remaining time of open-circuit voltage (OCV); hence, it calls for a more stable passivation layer to cover the electrode surface. Here, a surface modification was successfully achieved via artificial diazonium grafting using monomers, such as poly­(ethylene glycol), α-methoxy, ω-allyloxy (PEG), and allyl glycidyl cyclocarbonate (AGC), on glassy carbon. Physical and electrochemical measurements indicated that the hydrophobic layer composed of PEG or AGC species was well grafted on the electrode surface. The grafted hydrophobic coatings could protect the electrode surface from the water molecules in the bulk electrolyte and then suppress the free water decomposition (from LSV) but still migrating lithium ions. Furthermore, multiple cycles of CV with one-hour resting OCV identified the good stability of the hydrophobic grafting layer, which is a highlight compared with our precious work. These findings relying on the diazonium grafting design may offer a new strategy to construct a stable artificial SEI layer that can well protect the electrode surface from the free water molecule.
doi_str_mv 10.1021/acsami.3c00872
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04088989v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808585595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-609f0bad8bb8271fc6b8dd1fa302721fae45f9c247ebdb696613745d03dffc593</originalsourceid><addsrcrecordid>eNp1kctv1DAQhy0Eog-4ckQ-QqUsthMn9rFayhZpJSTK42hN_KCunKTYDtX2r8dLtnvjNDP2N99hfgi9oWRFCaMfQCcY_KrWhIiOPUOnVDZNJRhnz49905ygs5TuCGlrRvhLdFJ3lEkpu1P08MOnGYJ_9OMv_BOyjfirNbPOfhrxg8-3-KOHx2n084A3EVzec-UL8CZASju8htiX-SpYneNkLL6ZowNtsd9D_4yVH6sbCPkJCrtsX6EXDkKyrw_1HH3_dPVtfV1tv2w-ry-3FdRU5qol0pEejOh7wTrqdNsLY6iDmrCOlWob7qRmTWd707eybWndNdyQ2jinuazP0fvFewtB3Uc_QNypCby6vtyq_RtpiBBSyD-0sO8W9j5Ov2ebshp80jYEGO00J8UEEVxwLnlBVwuq45RStO7opkTtg1FLMOoQTFl4e3DP_WDNEX9KogAXC1AW1d00x7Gc5X-2vx3dmO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808585595</pqid></control><display><type>article</type><title>Visualizing Water Reduction with Diazonium Grafting on a Glassy Carbon Electrode Surface in a Water-in-Salt Electrolyte</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhu, Yachao ; Droguet, Lea ; Deng, Jie ; Wang, Xuanze ; Li, Luming ; Dufil, Yannick ; Deschannels, Mathieu ; Jommongkol, Rossukon ; Pareseecharoen, Chayaporn ; Grimaud, Alexis ; Tarascon, Jean-Marie ; Fontaine, Olivier</creator><creatorcontrib>Zhu, Yachao ; Droguet, Lea ; Deng, Jie ; Wang, Xuanze ; Li, Luming ; Dufil, Yannick ; Deschannels, Mathieu ; Jommongkol, Rossukon ; Pareseecharoen, Chayaporn ; Grimaud, Alexis ; Tarascon, Jean-Marie ; Fontaine, Olivier</creatorcontrib><description>Aqueous batteries are regaining interest, thanks to the extended working stability voltage window in a highly concentrated electrolyte, namely the water-in-salt electrolyte. A solid-electrolyte interphase (SEI) forms on the negative electrode to prevent water access to the electrode surface. However, we further reported that the formed SEI layer was not uniform on the surface of the glassy carbon electrode. The SEI after passivation will also show degradation during the remaining time of open-circuit voltage (OCV); hence, it calls for a more stable passivation layer to cover the electrode surface. Here, a surface modification was successfully achieved via artificial diazonium grafting using monomers, such as poly­(ethylene glycol), α-methoxy, ω-allyloxy (PEG), and allyl glycidyl cyclocarbonate (AGC), on glassy carbon. Physical and electrochemical measurements indicated that the hydrophobic layer composed of PEG or AGC species was well grafted on the electrode surface. The grafted hydrophobic coatings could protect the electrode surface from the water molecules in the bulk electrolyte and then suppress the free water decomposition (from LSV) but still migrating lithium ions. Furthermore, multiple cycles of CV with one-hour resting OCV identified the good stability of the hydrophobic grafting layer, which is a highlight compared with our precious work. These findings relying on the diazonium grafting design may offer a new strategy to construct a stable artificial SEI layer that can well protect the electrode surface from the free water molecule.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c00872</identifier><identifier>PMID: 37129997</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry ; Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-05, Vol.15 (19), p.23899-23907</ispartof><rights>2023 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a319t-609f0bad8bb8271fc6b8dd1fa302721fae45f9c247ebdb696613745d03dffc593</cites><orcidid>0000-0002-0318-0671 ; 0000-0002-1804-5990 ; 0000-0002-7059-6845 ; 0000-0001-8374-3544 ; 0000-0002-9966-205X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37129997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-picardie.hal.science/hal-04088989$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Yachao</creatorcontrib><creatorcontrib>Droguet, Lea</creatorcontrib><creatorcontrib>Deng, Jie</creatorcontrib><creatorcontrib>Wang, Xuanze</creatorcontrib><creatorcontrib>Li, Luming</creatorcontrib><creatorcontrib>Dufil, Yannick</creatorcontrib><creatorcontrib>Deschannels, Mathieu</creatorcontrib><creatorcontrib>Jommongkol, Rossukon</creatorcontrib><creatorcontrib>Pareseecharoen, Chayaporn</creatorcontrib><creatorcontrib>Grimaud, Alexis</creatorcontrib><creatorcontrib>Tarascon, Jean-Marie</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><title>Visualizing Water Reduction with Diazonium Grafting on a Glassy Carbon Electrode Surface in a Water-in-Salt Electrolyte</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Aqueous batteries are regaining interest, thanks to the extended working stability voltage window in a highly concentrated electrolyte, namely the water-in-salt electrolyte. A solid-electrolyte interphase (SEI) forms on the negative electrode to prevent water access to the electrode surface. However, we further reported that the formed SEI layer was not uniform on the surface of the glassy carbon electrode. The SEI after passivation will also show degradation during the remaining time of open-circuit voltage (OCV); hence, it calls for a more stable passivation layer to cover the electrode surface. Here, a surface modification was successfully achieved via artificial diazonium grafting using monomers, such as poly­(ethylene glycol), α-methoxy, ω-allyloxy (PEG), and allyl glycidyl cyclocarbonate (AGC), on glassy carbon. Physical and electrochemical measurements indicated that the hydrophobic layer composed of PEG or AGC species was well grafted on the electrode surface. The grafted hydrophobic coatings could protect the electrode surface from the water molecules in the bulk electrolyte and then suppress the free water decomposition (from LSV) but still migrating lithium ions. Furthermore, multiple cycles of CV with one-hour resting OCV identified the good stability of the hydrophobic grafting layer, which is a highlight compared with our precious work. These findings relying on the diazonium grafting design may offer a new strategy to construct a stable artificial SEI layer that can well protect the electrode surface from the free water molecule.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kctv1DAQhy0Eog-4ckQ-QqUsthMn9rFayhZpJSTK42hN_KCunKTYDtX2r8dLtnvjNDP2N99hfgi9oWRFCaMfQCcY_KrWhIiOPUOnVDZNJRhnz49905ygs5TuCGlrRvhLdFJ3lEkpu1P08MOnGYJ_9OMv_BOyjfirNbPOfhrxg8-3-KOHx2n084A3EVzec-UL8CZASju8htiX-SpYneNkLL6ZowNtsd9D_4yVH6sbCPkJCrtsX6EXDkKyrw_1HH3_dPVtfV1tv2w-ry-3FdRU5qol0pEejOh7wTrqdNsLY6iDmrCOlWob7qRmTWd707eybWndNdyQ2jinuazP0fvFewtB3Uc_QNypCby6vtyq_RtpiBBSyD-0sO8W9j5Ov2ebshp80jYEGO00J8UEEVxwLnlBVwuq45RStO7opkTtg1FLMOoQTFl4e3DP_WDNEX9KogAXC1AW1d00x7Gc5X-2vx3dmO4</recordid><startdate>20230517</startdate><enddate>20230517</enddate><creator>Zhu, Yachao</creator><creator>Droguet, Lea</creator><creator>Deng, Jie</creator><creator>Wang, Xuanze</creator><creator>Li, Luming</creator><creator>Dufil, Yannick</creator><creator>Deschannels, Mathieu</creator><creator>Jommongkol, Rossukon</creator><creator>Pareseecharoen, Chayaporn</creator><creator>Grimaud, Alexis</creator><creator>Tarascon, Jean-Marie</creator><creator>Fontaine, Olivier</creator><general>American Chemical Society</general><general>Washington, D.C. : American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0318-0671</orcidid><orcidid>https://orcid.org/0000-0002-1804-5990</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0001-8374-3544</orcidid><orcidid>https://orcid.org/0000-0002-9966-205X</orcidid></search><sort><creationdate>20230517</creationdate><title>Visualizing Water Reduction with Diazonium Grafting on a Glassy Carbon Electrode Surface in a Water-in-Salt Electrolyte</title><author>Zhu, Yachao ; Droguet, Lea ; Deng, Jie ; Wang, Xuanze ; Li, Luming ; Dufil, Yannick ; Deschannels, Mathieu ; Jommongkol, Rossukon ; Pareseecharoen, Chayaporn ; Grimaud, Alexis ; Tarascon, Jean-Marie ; Fontaine, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-609f0bad8bb8271fc6b8dd1fa302721fae45f9c247ebdb696613745d03dffc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yachao</creatorcontrib><creatorcontrib>Droguet, Lea</creatorcontrib><creatorcontrib>Deng, Jie</creatorcontrib><creatorcontrib>Wang, Xuanze</creatorcontrib><creatorcontrib>Li, Luming</creatorcontrib><creatorcontrib>Dufil, Yannick</creatorcontrib><creatorcontrib>Deschannels, Mathieu</creatorcontrib><creatorcontrib>Jommongkol, Rossukon</creatorcontrib><creatorcontrib>Pareseecharoen, Chayaporn</creatorcontrib><creatorcontrib>Grimaud, Alexis</creatorcontrib><creatorcontrib>Tarascon, Jean-Marie</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yachao</au><au>Droguet, Lea</au><au>Deng, Jie</au><au>Wang, Xuanze</au><au>Li, Luming</au><au>Dufil, Yannick</au><au>Deschannels, Mathieu</au><au>Jommongkol, Rossukon</au><au>Pareseecharoen, Chayaporn</au><au>Grimaud, Alexis</au><au>Tarascon, Jean-Marie</au><au>Fontaine, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing Water Reduction with Diazonium Grafting on a Glassy Carbon Electrode Surface in a Water-in-Salt Electrolyte</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-05-17</date><risdate>2023</risdate><volume>15</volume><issue>19</issue><spage>23899</spage><epage>23907</epage><pages>23899-23907</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Aqueous batteries are regaining interest, thanks to the extended working stability voltage window in a highly concentrated electrolyte, namely the water-in-salt electrolyte. A solid-electrolyte interphase (SEI) forms on the negative electrode to prevent water access to the electrode surface. However, we further reported that the formed SEI layer was not uniform on the surface of the glassy carbon electrode. The SEI after passivation will also show degradation during the remaining time of open-circuit voltage (OCV); hence, it calls for a more stable passivation layer to cover the electrode surface. Here, a surface modification was successfully achieved via artificial diazonium grafting using monomers, such as poly­(ethylene glycol), α-methoxy, ω-allyloxy (PEG), and allyl glycidyl cyclocarbonate (AGC), on glassy carbon. Physical and electrochemical measurements indicated that the hydrophobic layer composed of PEG or AGC species was well grafted on the electrode surface. The grafted hydrophobic coatings could protect the electrode surface from the water molecules in the bulk electrolyte and then suppress the free water decomposition (from LSV) but still migrating lithium ions. Furthermore, multiple cycles of CV with one-hour resting OCV identified the good stability of the hydrophobic grafting layer, which is a highlight compared with our precious work. These findings relying on the diazonium grafting design may offer a new strategy to construct a stable artificial SEI layer that can well protect the electrode surface from the free water molecule.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37129997</pmid><doi>10.1021/acsami.3c00872</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0318-0671</orcidid><orcidid>https://orcid.org/0000-0002-1804-5990</orcidid><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0001-8374-3544</orcidid><orcidid>https://orcid.org/0000-0002-9966-205X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-05, Vol.15 (19), p.23899-23907
issn 1944-8244
1944-8252
language eng
recordid cdi_hal_primary_oai_HAL_hal_04088989v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemical Sciences
Material chemistry
Surfaces, Interfaces, and Applications
title Visualizing Water Reduction with Diazonium Grafting on a Glassy Carbon Electrode Surface in a Water-in-Salt Electrolyte
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20Water%20Reduction%20with%20Diazonium%20Grafting%20on%20a%20Glassy%20Carbon%20Electrode%20Surface%20in%20a%20Water-in-Salt%20Electrolyte&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhu,%20Yachao&rft.date=2023-05-17&rft.volume=15&rft.issue=19&rft.spage=23899&rft.epage=23907&rft.pages=23899-23907&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c00872&rft_dat=%3Cproquest_hal_p%3E2808585595%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a319t-609f0bad8bb8271fc6b8dd1fa302721fae45f9c247ebdb696613745d03dffc593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2808585595&rft_id=info:pmid/37129997&rfr_iscdi=true