Loading…
Eiffel Tower: A deep-sea underwater dataset for long-term visual localization
Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources...
Saved in:
Published in: | The International journal of robotics research 2023-08, Vol.42 (9), p.689-699 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43 |
container_end_page | 699 |
container_issue | 9 |
container_start_page | 689 |
container_title | The International journal of robotics research |
container_volume | 42 |
creator | Boittiaux, Clémentin Dune, Claire Ferrera, Maxime Arnaubec, Aurélien Marxer, Ricard Matabos, Marjolaine Van Audenhaege, Loïc Hugel, Vincent |
description | Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/. |
doi_str_mv | 10.1177/02783649231177322 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04089339v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649231177322</sage_id><sourcerecordid>2860557469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwsceKQ4r_YCbeqKhSpiEs5W9vELqnSuNhJK3h6HAXBAXFa7ew3o9UgdE3JhFKl7ghTGZciZ7xfOWMnaESVoAmnSp6iUX9PeuAcXYSwJYRwSfIRep5X1poar9zR-Hs8xaUx-yQYwF1TGn-E1nhcQgvBtNg6j2vXbJIo7vChCh3UUSigrj6hrVxzic4s1MFcfc8xen2Yr2aLZPny-DSbLpOCC9kmkKXCyCwTnAIXxuRWFtwyK9I1L9KSZFAIUKrITWmzdcqVKhklMpMkwgwEH6PbIfcNar331Q78h3ZQ6cV0qXuNCJLlnOcHGtmbgd17996Z0Oqt63wT39MsJqapEjKPFB2owrsQvLE_sZTovlL9p-HomQyeABvzm_q_4Qso4Xlk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860557469</pqid></control><display><type>article</type><title>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</title><source>Sage Journals Online</source><creator>Boittiaux, Clémentin ; Dune, Claire ; Ferrera, Maxime ; Arnaubec, Aurélien ; Marxer, Ricard ; Matabos, Marjolaine ; Van Audenhaege, Loïc ; Hugel, Vincent</creator><creatorcontrib>Boittiaux, Clémentin ; Dune, Claire ; Ferrera, Maxime ; Arnaubec, Aurélien ; Marxer, Ricard ; Matabos, Marjolaine ; Van Audenhaege, Loïc ; Hugel, Vincent</creatorcontrib><description>Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649231177322</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Computer Science ; Computer Vision and Pattern Recognition ; Datasets ; Deep sea environments ; Localization ; Navigation ; Robotics ; Underwater ; Visual observation</subject><ispartof>The International journal of robotics research, 2023-08, Vol.42 (9), p.689-699</ispartof><rights>The Author(s) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</citedby><cites>FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</cites><orcidid>0000-0001-5099-5059 ; 0000-0002-1024-4151 ; 0000-0002-1487-3502 ; 0000-0003-0221-5614 ; 0000-0003-3675-4894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904,79111</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04089339$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boittiaux, Clémentin</creatorcontrib><creatorcontrib>Dune, Claire</creatorcontrib><creatorcontrib>Ferrera, Maxime</creatorcontrib><creatorcontrib>Arnaubec, Aurélien</creatorcontrib><creatorcontrib>Marxer, Ricard</creatorcontrib><creatorcontrib>Matabos, Marjolaine</creatorcontrib><creatorcontrib>Van Audenhaege, Loïc</creatorcontrib><creatorcontrib>Hugel, Vincent</creatorcontrib><title>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</title><title>The International journal of robotics research</title><description>Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/.</description><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Datasets</subject><subject>Deep sea environments</subject><subject>Localization</subject><subject>Navigation</subject><subject>Robotics</subject><subject>Underwater</subject><subject>Visual observation</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwsceKQ4r_YCbeqKhSpiEs5W9vELqnSuNhJK3h6HAXBAXFa7ew3o9UgdE3JhFKl7ghTGZciZ7xfOWMnaESVoAmnSp6iUX9PeuAcXYSwJYRwSfIRep5X1poar9zR-Hs8xaUx-yQYwF1TGn-E1nhcQgvBtNg6j2vXbJIo7vChCh3UUSigrj6hrVxzic4s1MFcfc8xen2Yr2aLZPny-DSbLpOCC9kmkKXCyCwTnAIXxuRWFtwyK9I1L9KSZFAIUKrITWmzdcqVKhklMpMkwgwEH6PbIfcNar331Q78h3ZQ6cV0qXuNCJLlnOcHGtmbgd17996Z0Oqt63wT39MsJqapEjKPFB2owrsQvLE_sZTovlL9p-HomQyeABvzm_q_4Qso4Xlk</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Boittiaux, Clémentin</creator><creator>Dune, Claire</creator><creator>Ferrera, Maxime</creator><creator>Arnaubec, Aurélien</creator><creator>Marxer, Ricard</creator><creator>Matabos, Marjolaine</creator><creator>Van Audenhaege, Loïc</creator><creator>Hugel, Vincent</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5099-5059</orcidid><orcidid>https://orcid.org/0000-0002-1024-4151</orcidid><orcidid>https://orcid.org/0000-0002-1487-3502</orcidid><orcidid>https://orcid.org/0000-0003-0221-5614</orcidid><orcidid>https://orcid.org/0000-0003-3675-4894</orcidid></search><sort><creationdate>20230801</creationdate><title>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</title><author>Boittiaux, Clémentin ; Dune, Claire ; Ferrera, Maxime ; Arnaubec, Aurélien ; Marxer, Ricard ; Matabos, Marjolaine ; Van Audenhaege, Loïc ; Hugel, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Datasets</topic><topic>Deep sea environments</topic><topic>Localization</topic><topic>Navigation</topic><topic>Robotics</topic><topic>Underwater</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boittiaux, Clémentin</creatorcontrib><creatorcontrib>Dune, Claire</creatorcontrib><creatorcontrib>Ferrera, Maxime</creatorcontrib><creatorcontrib>Arnaubec, Aurélien</creatorcontrib><creatorcontrib>Marxer, Ricard</creatorcontrib><creatorcontrib>Matabos, Marjolaine</creatorcontrib><creatorcontrib>Van Audenhaege, Loïc</creatorcontrib><creatorcontrib>Hugel, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boittiaux, Clémentin</au><au>Dune, Claire</au><au>Ferrera, Maxime</au><au>Arnaubec, Aurélien</au><au>Marxer, Ricard</au><au>Matabos, Marjolaine</au><au>Van Audenhaege, Loïc</au><au>Hugel, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</atitle><jtitle>The International journal of robotics research</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>42</volume><issue>9</issue><spage>689</spage><epage>699</epage><pages>689-699</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649231177322</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5099-5059</orcidid><orcidid>https://orcid.org/0000-0002-1024-4151</orcidid><orcidid>https://orcid.org/0000-0002-1487-3502</orcidid><orcidid>https://orcid.org/0000-0003-0221-5614</orcidid><orcidid>https://orcid.org/0000-0003-3675-4894</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2023-08, Vol.42 (9), p.689-699 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04089339v1 |
source | Sage Journals Online |
subjects | Computer Science Computer Vision and Pattern Recognition Datasets Deep sea environments Localization Navigation Robotics Underwater Visual observation |
title | Eiffel Tower: A deep-sea underwater dataset for long-term visual localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eiffel%20Tower:%20A%20deep-sea%20underwater%20dataset%20for%20long-term%20visual%20localization&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Boittiaux,%20Cl%C3%A9mentin&rft.date=2023-08-01&rft.volume=42&rft.issue=9&rft.spage=689&rft.epage=699&rft.pages=689-699&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649231177322&rft_dat=%3Cproquest_hal_p%3E2860557469%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2860557469&rft_id=info:pmid/&rft_sage_id=10.1177_02783649231177322&rfr_iscdi=true |