Loading…

Eiffel Tower: A deep-sea underwater dataset for long-term visual localization

Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of robotics research 2023-08, Vol.42 (9), p.689-699
Main Authors: Boittiaux, Clémentin, Dune, Claire, Ferrera, Maxime, Arnaubec, Aurélien, Marxer, Ricard, Matabos, Marjolaine, Van Audenhaege, Loïc, Hugel, Vincent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43
cites cdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43
container_end_page 699
container_issue 9
container_start_page 689
container_title The International journal of robotics research
container_volume 42
creator Boittiaux, Clémentin
Dune, Claire
Ferrera, Maxime
Arnaubec, Aurélien
Marxer, Ricard
Matabos, Marjolaine
Van Audenhaege, Loïc
Hugel, Vincent
description Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/.
doi_str_mv 10.1177/02783649231177322
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04089339v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649231177322</sage_id><sourcerecordid>2860557469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwsceKQ4r_YCbeqKhSpiEs5W9vELqnSuNhJK3h6HAXBAXFa7ew3o9UgdE3JhFKl7ghTGZciZ7xfOWMnaESVoAmnSp6iUX9PeuAcXYSwJYRwSfIRep5X1poar9zR-Hs8xaUx-yQYwF1TGn-E1nhcQgvBtNg6j2vXbJIo7vChCh3UUSigrj6hrVxzic4s1MFcfc8xen2Yr2aLZPny-DSbLpOCC9kmkKXCyCwTnAIXxuRWFtwyK9I1L9KSZFAIUKrITWmzdcqVKhklMpMkwgwEH6PbIfcNar331Q78h3ZQ6cV0qXuNCJLlnOcHGtmbgd17996Z0Oqt63wT39MsJqapEjKPFB2owrsQvLE_sZTovlL9p-HomQyeABvzm_q_4Qso4Xlk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860557469</pqid></control><display><type>article</type><title>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</title><source>Sage Journals Online</source><creator>Boittiaux, Clémentin ; Dune, Claire ; Ferrera, Maxime ; Arnaubec, Aurélien ; Marxer, Ricard ; Matabos, Marjolaine ; Van Audenhaege, Loïc ; Hugel, Vincent</creator><creatorcontrib>Boittiaux, Clémentin ; Dune, Claire ; Ferrera, Maxime ; Arnaubec, Aurélien ; Marxer, Ricard ; Matabos, Marjolaine ; Van Audenhaege, Loïc ; Hugel, Vincent</creatorcontrib><description>Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649231177322</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Computer Science ; Computer Vision and Pattern Recognition ; Datasets ; Deep sea environments ; Localization ; Navigation ; Robotics ; Underwater ; Visual observation</subject><ispartof>The International journal of robotics research, 2023-08, Vol.42 (9), p.689-699</ispartof><rights>The Author(s) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</citedby><cites>FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</cites><orcidid>0000-0001-5099-5059 ; 0000-0002-1024-4151 ; 0000-0002-1487-3502 ; 0000-0003-0221-5614 ; 0000-0003-3675-4894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904,79111</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04089339$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boittiaux, Clémentin</creatorcontrib><creatorcontrib>Dune, Claire</creatorcontrib><creatorcontrib>Ferrera, Maxime</creatorcontrib><creatorcontrib>Arnaubec, Aurélien</creatorcontrib><creatorcontrib>Marxer, Ricard</creatorcontrib><creatorcontrib>Matabos, Marjolaine</creatorcontrib><creatorcontrib>Van Audenhaege, Loïc</creatorcontrib><creatorcontrib>Hugel, Vincent</creatorcontrib><title>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</title><title>The International journal of robotics research</title><description>Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/.</description><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Datasets</subject><subject>Deep sea environments</subject><subject>Localization</subject><subject>Navigation</subject><subject>Robotics</subject><subject>Underwater</subject><subject>Visual observation</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwsceKQ4r_YCbeqKhSpiEs5W9vELqnSuNhJK3h6HAXBAXFa7ew3o9UgdE3JhFKl7ghTGZciZ7xfOWMnaESVoAmnSp6iUX9PeuAcXYSwJYRwSfIRep5X1poar9zR-Hs8xaUx-yQYwF1TGn-E1nhcQgvBtNg6j2vXbJIo7vChCh3UUSigrj6hrVxzic4s1MFcfc8xen2Yr2aLZPny-DSbLpOCC9kmkKXCyCwTnAIXxuRWFtwyK9I1L9KSZFAIUKrITWmzdcqVKhklMpMkwgwEH6PbIfcNar331Q78h3ZQ6cV0qXuNCJLlnOcHGtmbgd17996Z0Oqt63wT39MsJqapEjKPFB2owrsQvLE_sZTovlL9p-HomQyeABvzm_q_4Qso4Xlk</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Boittiaux, Clémentin</creator><creator>Dune, Claire</creator><creator>Ferrera, Maxime</creator><creator>Arnaubec, Aurélien</creator><creator>Marxer, Ricard</creator><creator>Matabos, Marjolaine</creator><creator>Van Audenhaege, Loïc</creator><creator>Hugel, Vincent</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5099-5059</orcidid><orcidid>https://orcid.org/0000-0002-1024-4151</orcidid><orcidid>https://orcid.org/0000-0002-1487-3502</orcidid><orcidid>https://orcid.org/0000-0003-0221-5614</orcidid><orcidid>https://orcid.org/0000-0003-3675-4894</orcidid></search><sort><creationdate>20230801</creationdate><title>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</title><author>Boittiaux, Clémentin ; Dune, Claire ; Ferrera, Maxime ; Arnaubec, Aurélien ; Marxer, Ricard ; Matabos, Marjolaine ; Van Audenhaege, Loïc ; Hugel, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Datasets</topic><topic>Deep sea environments</topic><topic>Localization</topic><topic>Navigation</topic><topic>Robotics</topic><topic>Underwater</topic><topic>Visual observation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boittiaux, Clémentin</creatorcontrib><creatorcontrib>Dune, Claire</creatorcontrib><creatorcontrib>Ferrera, Maxime</creatorcontrib><creatorcontrib>Arnaubec, Aurélien</creatorcontrib><creatorcontrib>Marxer, Ricard</creatorcontrib><creatorcontrib>Matabos, Marjolaine</creatorcontrib><creatorcontrib>Van Audenhaege, Loïc</creatorcontrib><creatorcontrib>Hugel, Vincent</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boittiaux, Clémentin</au><au>Dune, Claire</au><au>Ferrera, Maxime</au><au>Arnaubec, Aurélien</au><au>Marxer, Ricard</au><au>Matabos, Marjolaine</au><au>Van Audenhaege, Loïc</au><au>Hugel, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eiffel Tower: A deep-sea underwater dataset for long-term visual localization</atitle><jtitle>The International journal of robotics research</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>42</volume><issue>9</issue><spage>689</spage><epage>699</epage><pages>689-699</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet, it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of 5 years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at seanoe.org/data/00810/92226/.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649231177322</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5099-5059</orcidid><orcidid>https://orcid.org/0000-0002-1024-4151</orcidid><orcidid>https://orcid.org/0000-0002-1487-3502</orcidid><orcidid>https://orcid.org/0000-0003-0221-5614</orcidid><orcidid>https://orcid.org/0000-0003-3675-4894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2023-08, Vol.42 (9), p.689-699
issn 0278-3649
1741-3176
language eng
recordid cdi_hal_primary_oai_HAL_hal_04089339v1
source Sage Journals Online
subjects Computer Science
Computer Vision and Pattern Recognition
Datasets
Deep sea environments
Localization
Navigation
Robotics
Underwater
Visual observation
title Eiffel Tower: A deep-sea underwater dataset for long-term visual localization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eiffel%20Tower:%20A%20deep-sea%20underwater%20dataset%20for%20long-term%20visual%20localization&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Boittiaux,%20Cl%C3%A9mentin&rft.date=2023-08-01&rft.volume=42&rft.issue=9&rft.spage=689&rft.epage=699&rft.pages=689-699&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649231177322&rft_dat=%3Cproquest_hal_p%3E2860557469%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-a854e688431a34ee9f6c3f2f45b3c5d08ac4a77c9edf8b5377d21068604ee2a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2860557469&rft_id=info:pmid/&rft_sage_id=10.1177_02783649231177322&rfr_iscdi=true