Loading…

Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material

We investigated the effect of iron substitutions upon the structural, magnetic, electric, and dielectric properties in Pr 0.7 Ca 0.3 Mn 1– x Fe x O 3 mixed-valence manganite. The samples were synthesized using the solid-state reaction method and were analyzed by X-ray diffraction, magnetic and imped...

Full description

Saved in:
Bibliographic Details
Published in:European physical journal plus 2020-10, Vol.135 (10), p.809, Article 809
Main Authors: Moualhi, Y., M’nassri, R., Nofal, Muaffaq M., Rahmouni, H., Selmi, A., Gassoumi, M., Chniba-Boudjada, N., Khirouni, K., Cheikrouhou, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-3888dfd044021feaf96d53a3c1be7fb3c1c500cedd202b39f82e35c2f474f9df3
cites cdi_FETCH-LOGICAL-c368t-3888dfd044021feaf96d53a3c1be7fb3c1c500cedd202b39f82e35c2f474f9df3
container_end_page
container_issue 10
container_start_page 809
container_title European physical journal plus
container_volume 135
creator Moualhi, Y.
M’nassri, R.
Nofal, Muaffaq M.
Rahmouni, H.
Selmi, A.
Gassoumi, M.
Chniba-Boudjada, N.
Khirouni, K.
Cheikrouhou, A.
description We investigated the effect of iron substitutions upon the structural, magnetic, electric, and dielectric properties in Pr 0.7 Ca 0.3 Mn 1– x Fe x O 3 mixed-valence manganite. The samples were synthesized using the solid-state reaction method and were analyzed by X-ray diffraction, magnetic and impedance spectroscopy measurements. X-ray diffraction analysis shows that all samples were found to be single phase and crystallize in the orthorhombic structure with Pnma space group. While the parent compound Pr 0.7 Ca 0.3 MnO 3 exhibits a charge order sate, the substituted samples with low amount of iron exhibit a paramagnetic to ferromagnetic transition. However, the Curie temperature T C decreases with Fe content when we move from x  = 0.02 to x  = 0.1. From DC-conductance measurements, a typical semi-conducting behavior without any transition is observed for all investigated samples. Beyond a certain critical temperature noticed T sat , the DC-conductance begins to saturate and reaches a maximum value. Then, the saturation temperature increases with increasing Fe content to attain T sat  = 260 K for x  = 0.10. The correlated barrier hopping model was used to explain the frequency dependence of AC conductance. Impedance measurements confirm the contribution of the resistive grain boundary on the conduction mechanism. Then, it proves the existence of multiple electrical relaxation phenomena in the studied samples. The dielectric constant is found to be temperature dependent indicating that the compounds are polar dielectrics where the dipole orientation is governed by increasing temperature.
doi_str_mv 10.1140/epjp/s13360-020-00838-2
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04099897v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920692661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3888dfd044021feaf96d53a3c1be7fb3c1c500cedd202b39f82e35c2f474f9df3</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhQdRsGifwQFXLsbmb2aSZSnWFgpudB3S5GY6df5MpkJ3voNv6JOYcUTdeSHcS-53Dgkniq4wusWYoRl0-27mMaUZShAJB3HKE3ISTQgWKEkZY6d_5vNo6v0ehWICM8Em0fO6sdUBGg1xa-MlxKbtyqaI2ybudkdfalXFnWs7cH0JfmD0Trki0M6AAxOWykNrjnV5qD_e3gOvx6lWTaGasoe4Vj24UlWX0ZlVlYfpd7-InpZ3j4tVsnm4Xy_mm0TTjPcJ5ZwbaxBjiGALyorMpFRRjbeQ223oOkVIgzEEkS0VlhOgqSaW5cwKY-lFdDP67lQlO1fWyh1lq0q5mm_kcIcYEoKL_BUH9npkwydfDuB7uW8PrgnPk0QQlAmSZQOVj5R2rfcO7I8tRnIIQg5ByDEIGYKQX0FIEpR8VPqgaApwv_7_ST8BvDGShQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920692661</pqid></control><display><type>article</type><title>Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material</title><source>Springer Nature</source><creator>Moualhi, Y. ; M’nassri, R. ; Nofal, Muaffaq M. ; Rahmouni, H. ; Selmi, A. ; Gassoumi, M. ; Chniba-Boudjada, N. ; Khirouni, K. ; Cheikrouhou, A.</creator><creatorcontrib>Moualhi, Y. ; M’nassri, R. ; Nofal, Muaffaq M. ; Rahmouni, H. ; Selmi, A. ; Gassoumi, M. ; Chniba-Boudjada, N. ; Khirouni, K. ; Cheikrouhou, A.</creatorcontrib><description>We investigated the effect of iron substitutions upon the structural, magnetic, electric, and dielectric properties in Pr 0.7 Ca 0.3 Mn 1– x Fe x O 3 mixed-valence manganite. The samples were synthesized using the solid-state reaction method and were analyzed by X-ray diffraction, magnetic and impedance spectroscopy measurements. X-ray diffraction analysis shows that all samples were found to be single phase and crystallize in the orthorhombic structure with Pnma space group. While the parent compound Pr 0.7 Ca 0.3 MnO 3 exhibits a charge order sate, the substituted samples with low amount of iron exhibit a paramagnetic to ferromagnetic transition. However, the Curie temperature T C decreases with Fe content when we move from x  = 0.02 to x  = 0.1. From DC-conductance measurements, a typical semi-conducting behavior without any transition is observed for all investigated samples. Beyond a certain critical temperature noticed T sat , the DC-conductance begins to saturate and reaches a maximum value. Then, the saturation temperature increases with increasing Fe content to attain T sat  = 260 K for x  = 0.10. The correlated barrier hopping model was used to explain the frequency dependence of AC conductance. Impedance measurements confirm the contribution of the resistive grain boundary on the conduction mechanism. Then, it proves the existence of multiple electrical relaxation phenomena in the studied samples. The dielectric constant is found to be temperature dependent indicating that the compounds are polar dielectrics where the dipole orientation is governed by increasing temperature.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-020-00838-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Conductance ; Conduction ; Critical temperature ; Curie temperature ; Dielectric properties ; Dipoles ; Electrical properties ; Ferromagnetism ; Grain boundaries ; Impedance ; Iron ; Magnetic properties ; Manganites ; Mathematical and Computational Physics ; Metal oxides ; Methods ; Molecular ; Optical and Plasma Physics ; Oxidation ; Physical properties ; Physics ; Physics and Astronomy ; Praseodymium ; Regular Article ; Sintering ; Temperature ; Temperature dependence ; Theoretical ; X-ray diffraction</subject><ispartof>European physical journal plus, 2020-10, Vol.135 (10), p.809, Article 809</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3888dfd044021feaf96d53a3c1be7fb3c1c500cedd202b39f82e35c2f474f9df3</citedby><cites>FETCH-LOGICAL-c368t-3888dfd044021feaf96d53a3c1be7fb3c1c500cedd202b39f82e35c2f474f9df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04099897$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moualhi, Y.</creatorcontrib><creatorcontrib>M’nassri, R.</creatorcontrib><creatorcontrib>Nofal, Muaffaq M.</creatorcontrib><creatorcontrib>Rahmouni, H.</creatorcontrib><creatorcontrib>Selmi, A.</creatorcontrib><creatorcontrib>Gassoumi, M.</creatorcontrib><creatorcontrib>Chniba-Boudjada, N.</creatorcontrib><creatorcontrib>Khirouni, K.</creatorcontrib><creatorcontrib>Cheikrouhou, A.</creatorcontrib><title>Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>We investigated the effect of iron substitutions upon the structural, magnetic, electric, and dielectric properties in Pr 0.7 Ca 0.3 Mn 1– x Fe x O 3 mixed-valence manganite. The samples were synthesized using the solid-state reaction method and were analyzed by X-ray diffraction, magnetic and impedance spectroscopy measurements. X-ray diffraction analysis shows that all samples were found to be single phase and crystallize in the orthorhombic structure with Pnma space group. While the parent compound Pr 0.7 Ca 0.3 MnO 3 exhibits a charge order sate, the substituted samples with low amount of iron exhibit a paramagnetic to ferromagnetic transition. However, the Curie temperature T C decreases with Fe content when we move from x  = 0.02 to x  = 0.1. From DC-conductance measurements, a typical semi-conducting behavior without any transition is observed for all investigated samples. Beyond a certain critical temperature noticed T sat , the DC-conductance begins to saturate and reaches a maximum value. Then, the saturation temperature increases with increasing Fe content to attain T sat  = 260 K for x  = 0.10. The correlated barrier hopping model was used to explain the frequency dependence of AC conductance. Impedance measurements confirm the contribution of the resistive grain boundary on the conduction mechanism. Then, it proves the existence of multiple electrical relaxation phenomena in the studied samples. The dielectric constant is found to be temperature dependent indicating that the compounds are polar dielectrics where the dipole orientation is governed by increasing temperature.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductance</subject><subject>Conduction</subject><subject>Critical temperature</subject><subject>Curie temperature</subject><subject>Dielectric properties</subject><subject>Dipoles</subject><subject>Electrical properties</subject><subject>Ferromagnetism</subject><subject>Grain boundaries</subject><subject>Impedance</subject><subject>Iron</subject><subject>Magnetic properties</subject><subject>Manganites</subject><subject>Mathematical and Computational Physics</subject><subject>Metal oxides</subject><subject>Methods</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Oxidation</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Praseodymium</subject><subject>Regular Article</subject><subject>Sintering</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Theoretical</subject><subject>X-ray diffraction</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1KAzEUhQdRsGifwQFXLsbmb2aSZSnWFgpudB3S5GY6df5MpkJ3voNv6JOYcUTdeSHcS-53Dgkniq4wusWYoRl0-27mMaUZShAJB3HKE3ISTQgWKEkZY6d_5vNo6v0ehWICM8Em0fO6sdUBGg1xa-MlxKbtyqaI2ybudkdfalXFnWs7cH0JfmD0Trki0M6AAxOWykNrjnV5qD_e3gOvx6lWTaGasoe4Vj24UlWX0ZlVlYfpd7-InpZ3j4tVsnm4Xy_mm0TTjPcJ5ZwbaxBjiGALyorMpFRRjbeQ223oOkVIgzEEkS0VlhOgqSaW5cwKY-lFdDP67lQlO1fWyh1lq0q5mm_kcIcYEoKL_BUH9npkwydfDuB7uW8PrgnPk0QQlAmSZQOVj5R2rfcO7I8tRnIIQg5ByDEIGYKQX0FIEpR8VPqgaApwv_7_ST8BvDGShQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Moualhi, Y.</creator><creator>M’nassri, R.</creator><creator>Nofal, Muaffaq M.</creator><creator>Rahmouni, H.</creator><creator>Selmi, A.</creator><creator>Gassoumi, M.</creator><creator>Chniba-Boudjada, N.</creator><creator>Khirouni, K.</creator><creator>Cheikrouhou, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope></search><sort><creationdate>20201001</creationdate><title>Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material</title><author>Moualhi, Y. ; M’nassri, R. ; Nofal, Muaffaq M. ; Rahmouni, H. ; Selmi, A. ; Gassoumi, M. ; Chniba-Boudjada, N. ; Khirouni, K. ; Cheikrouhou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3888dfd044021feaf96d53a3c1be7fb3c1c500cedd202b39f82e35c2f474f9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductance</topic><topic>Conduction</topic><topic>Critical temperature</topic><topic>Curie temperature</topic><topic>Dielectric properties</topic><topic>Dipoles</topic><topic>Electrical properties</topic><topic>Ferromagnetism</topic><topic>Grain boundaries</topic><topic>Impedance</topic><topic>Iron</topic><topic>Magnetic properties</topic><topic>Manganites</topic><topic>Mathematical and Computational Physics</topic><topic>Metal oxides</topic><topic>Methods</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Oxidation</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Praseodymium</topic><topic>Regular Article</topic><topic>Sintering</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Theoretical</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moualhi, Y.</creatorcontrib><creatorcontrib>M’nassri, R.</creatorcontrib><creatorcontrib>Nofal, Muaffaq M.</creatorcontrib><creatorcontrib>Rahmouni, H.</creatorcontrib><creatorcontrib>Selmi, A.</creatorcontrib><creatorcontrib>Gassoumi, M.</creatorcontrib><creatorcontrib>Chniba-Boudjada, N.</creatorcontrib><creatorcontrib>Khirouni, K.</creatorcontrib><creatorcontrib>Cheikrouhou, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moualhi, Y.</au><au>M’nassri, R.</au><au>Nofal, Muaffaq M.</au><au>Rahmouni, H.</au><au>Selmi, A.</au><au>Gassoumi, M.</au><au>Chniba-Boudjada, N.</au><au>Khirouni, K.</au><au>Cheikrouhou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>135</volume><issue>10</issue><spage>809</spage><pages>809-</pages><artnum>809</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>We investigated the effect of iron substitutions upon the structural, magnetic, electric, and dielectric properties in Pr 0.7 Ca 0.3 Mn 1– x Fe x O 3 mixed-valence manganite. The samples were synthesized using the solid-state reaction method and were analyzed by X-ray diffraction, magnetic and impedance spectroscopy measurements. X-ray diffraction analysis shows that all samples were found to be single phase and crystallize in the orthorhombic structure with Pnma space group. While the parent compound Pr 0.7 Ca 0.3 MnO 3 exhibits a charge order sate, the substituted samples with low amount of iron exhibit a paramagnetic to ferromagnetic transition. However, the Curie temperature T C decreases with Fe content when we move from x  = 0.02 to x  = 0.1. From DC-conductance measurements, a typical semi-conducting behavior without any transition is observed for all investigated samples. Beyond a certain critical temperature noticed T sat , the DC-conductance begins to saturate and reaches a maximum value. Then, the saturation temperature increases with increasing Fe content to attain T sat  = 260 K for x  = 0.10. The correlated barrier hopping model was used to explain the frequency dependence of AC conductance. Impedance measurements confirm the contribution of the resistive grain boundary on the conduction mechanism. Then, it proves the existence of multiple electrical relaxation phenomena in the studied samples. The dielectric constant is found to be temperature dependent indicating that the compounds are polar dielectrics where the dipole orientation is governed by increasing temperature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-020-00838-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2020-10, Vol.135 (10), p.809, Article 809
issn 2190-5444
2190-5444
language eng
recordid cdi_hal_primary_oai_HAL_hal_04099897v1
source Springer Nature
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Conductance
Conduction
Critical temperature
Curie temperature
Dielectric properties
Dipoles
Electrical properties
Ferromagnetism
Grain boundaries
Impedance
Iron
Magnetic properties
Manganites
Mathematical and Computational Physics
Metal oxides
Methods
Molecular
Optical and Plasma Physics
Oxidation
Physical properties
Physics
Physics and Astronomy
Praseodymium
Regular Article
Sintering
Temperature
Temperature dependence
Theoretical
X-ray diffraction
title Influence of Fe doping on physical properties of charge ordered praseodymium–calcium–manganite material
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Fe%20doping%20on%20physical%20properties%20of%20charge%20ordered%20praseodymium%E2%80%93calcium%E2%80%93manganite%20material&rft.jtitle=European%20physical%20journal%20plus&rft.au=Moualhi,%20Y.&rft.date=2020-10-01&rft.volume=135&rft.issue=10&rft.spage=809&rft.pages=809-&rft.artnum=809&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-020-00838-2&rft_dat=%3Cproquest_hal_p%3E2920692661%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-3888dfd044021feaf96d53a3c1be7fb3c1c500cedd202b39f82e35c2f474f9df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920692661&rft_id=info:pmid/&rfr_iscdi=true