Loading…
Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe 2 Probed by THz Spintronic Emission
2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tu...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-04, Vol.36 (14) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1181-ff4ca905655734e5528cc004f28f22cf7ee36e956a968d95ad6d4be4aa1ff0ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1181-ff4ca905655734e5528cc004f28f22cf7ee36e956a968d95ad6d4be4aa1ff0ab3 |
container_end_page | |
container_issue | 14 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Abdukayumov, Khasan Mičica, Martin Ibrahim, Fatima Vojáček, Libor Vergnaud, Céline Marty, Alain Veuillen, Jean‐Yves Mallet, Pierre de Moraes, Isabelle Gomes Dosenovic, Djordje Gambarelli, Serge Maurel, Vincent Wright, Adrien Tignon, Jérôme Mangeney, Juliette Ouerghi, Abdelkarim Renard, Vincent Mesple, Florie Li, Jing Bonell, Frédéric Okuno, Hanako Chshiev, Mairbek George, Jean‐Marie Jaffrès, Henri Dhillon, Sukhdeep Jamet, Matthieu |
description | 2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe 2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as‐grown PtSe 2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe 2 unaffected, resulting in well‐defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness‐dependent electronic structure of PtSe 2 allows the control of SCC. Indeed, the transition from the inverse Rashba–Edelstein effect (IREE) in 1–3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe 2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe 2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters. |
doi_str_mv | 10.1002/adma.202304243 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04107294v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04107294v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1181-ff4ca905655734e5528cc004f28f22cf7ee36e956a968d95ad6d4be4aa1ff0ab3</originalsourceid><addsrcrecordid>eNo9kc1OwzAQhC0EEqVw5ewrh5S1Y6fxsSqFVqpERcs52ji2GpTElR1VKqc-AhISD9gnIeWnp9XOfLtzGEJuGQwYAL_HosYBBx6D4CI-Iz0mOYsEKHlOeqBiGalEpJfkKoQ3AFAJJD3yNWpdXerD_mOOO-Pp2DWtd1VlCrry2ISyLV1DrXc1nTVb44OhLxjWOR72n5PCVKE1ZUMn1hrd0tadoOWmk6dYVf9et_IHumiXhnK68C7vEvIdXU3ff9gutCk1ndRlCF3iNbmwWAVz8zf75PVxshpPo_nz02w8mkeasZRF1gqNCmQi5TAWRkqeag0gLE8t59oOjYkTo2SCKkkLJbFICpEbgcisBczjPrn7_bvGKtv4ska_yxyW2XQ0z44aCAZDrsSWdezgl9XeheCNPR0wyI4NZMcGslMD8Tf3jXxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe 2 Probed by THz Spintronic Emission</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Abdukayumov, Khasan ; Mičica, Martin ; Ibrahim, Fatima ; Vojáček, Libor ; Vergnaud, Céline ; Marty, Alain ; Veuillen, Jean‐Yves ; Mallet, Pierre ; de Moraes, Isabelle Gomes ; Dosenovic, Djordje ; Gambarelli, Serge ; Maurel, Vincent ; Wright, Adrien ; Tignon, Jérôme ; Mangeney, Juliette ; Ouerghi, Abdelkarim ; Renard, Vincent ; Mesple, Florie ; Li, Jing ; Bonell, Frédéric ; Okuno, Hanako ; Chshiev, Mairbek ; George, Jean‐Marie ; Jaffrès, Henri ; Dhillon, Sukhdeep ; Jamet, Matthieu</creator><creatorcontrib>Abdukayumov, Khasan ; Mičica, Martin ; Ibrahim, Fatima ; Vojáček, Libor ; Vergnaud, Céline ; Marty, Alain ; Veuillen, Jean‐Yves ; Mallet, Pierre ; de Moraes, Isabelle Gomes ; Dosenovic, Djordje ; Gambarelli, Serge ; Maurel, Vincent ; Wright, Adrien ; Tignon, Jérôme ; Mangeney, Juliette ; Ouerghi, Abdelkarim ; Renard, Vincent ; Mesple, Florie ; Li, Jing ; Bonell, Frédéric ; Okuno, Hanako ; Chshiev, Mairbek ; George, Jean‐Marie ; Jaffrès, Henri ; Dhillon, Sukhdeep ; Jamet, Matthieu</creatorcontrib><description>2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe 2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as‐grown PtSe 2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe 2 unaffected, resulting in well‐defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness‐dependent electronic structure of PtSe 2 allows the control of SCC. Indeed, the transition from the inverse Rashba–Edelstein effect (IREE) in 1–3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe 2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe 2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202304243</identifier><language>eng</language><publisher>Wiley-VCH Verlag</publisher><subject>Condensed Matter ; Engineering Sciences ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Physics</subject><ispartof>Advanced materials (Weinheim), 2024-04, Vol.36 (14)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1181-ff4ca905655734e5528cc004f28f22cf7ee36e956a968d95ad6d4be4aa1ff0ab3</citedby><cites>FETCH-LOGICAL-c1181-ff4ca905655734e5528cc004f28f22cf7ee36e956a968d95ad6d4be4aa1ff0ab3</cites><orcidid>0000-0002-8247-4677 ; 0000-0002-7374-6001 ; 0000-0002-9283-3821 ; 0000-0001-9232-7622 ; 0000-0002-9867-0592 ; 0000-0001-7296-0404 ; 0000-0001-5709-6945 ; 0000-0002-4354-4257 ; 0000-0002-5487-9570 ; 0000-0001-5498-4322 ; 0000-0002-1898-2765 ; 0000-0002-7599-9889 ; 0000-0002-2730-1255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04107294$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdukayumov, Khasan</creatorcontrib><creatorcontrib>Mičica, Martin</creatorcontrib><creatorcontrib>Ibrahim, Fatima</creatorcontrib><creatorcontrib>Vojáček, Libor</creatorcontrib><creatorcontrib>Vergnaud, Céline</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Veuillen, Jean‐Yves</creatorcontrib><creatorcontrib>Mallet, Pierre</creatorcontrib><creatorcontrib>de Moraes, Isabelle Gomes</creatorcontrib><creatorcontrib>Dosenovic, Djordje</creatorcontrib><creatorcontrib>Gambarelli, Serge</creatorcontrib><creatorcontrib>Maurel, Vincent</creatorcontrib><creatorcontrib>Wright, Adrien</creatorcontrib><creatorcontrib>Tignon, Jérôme</creatorcontrib><creatorcontrib>Mangeney, Juliette</creatorcontrib><creatorcontrib>Ouerghi, Abdelkarim</creatorcontrib><creatorcontrib>Renard, Vincent</creatorcontrib><creatorcontrib>Mesple, Florie</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Bonell, Frédéric</creatorcontrib><creatorcontrib>Okuno, Hanako</creatorcontrib><creatorcontrib>Chshiev, Mairbek</creatorcontrib><creatorcontrib>George, Jean‐Marie</creatorcontrib><creatorcontrib>Jaffrès, Henri</creatorcontrib><creatorcontrib>Dhillon, Sukhdeep</creatorcontrib><creatorcontrib>Jamet, Matthieu</creatorcontrib><title>Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe 2 Probed by THz Spintronic Emission</title><title>Advanced materials (Weinheim)</title><description>2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe 2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as‐grown PtSe 2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe 2 unaffected, resulting in well‐defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness‐dependent electronic structure of PtSe 2 allows the control of SCC. Indeed, the transition from the inverse Rashba–Edelstein effect (IREE) in 1–3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe 2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe 2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.</description><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Physics</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kc1OwzAQhC0EEqVw5ewrh5S1Y6fxsSqFVqpERcs52ji2GpTElR1VKqc-AhISD9gnIeWnp9XOfLtzGEJuGQwYAL_HosYBBx6D4CI-Iz0mOYsEKHlOeqBiGalEpJfkKoQ3AFAJJD3yNWpdXerD_mOOO-Pp2DWtd1VlCrry2ISyLV1DrXc1nTVb44OhLxjWOR72n5PCVKE1ZUMn1hrd0tadoOWmk6dYVf9et_IHumiXhnK68C7vEvIdXU3ff9gutCk1ndRlCF3iNbmwWAVz8zf75PVxshpPo_nz02w8mkeasZRF1gqNCmQi5TAWRkqeag0gLE8t59oOjYkTo2SCKkkLJbFICpEbgcisBczjPrn7_bvGKtv4ska_yxyW2XQ0z44aCAZDrsSWdezgl9XeheCNPR0wyI4NZMcGslMD8Tf3jXxM</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Abdukayumov, Khasan</creator><creator>Mičica, Martin</creator><creator>Ibrahim, Fatima</creator><creator>Vojáček, Libor</creator><creator>Vergnaud, Céline</creator><creator>Marty, Alain</creator><creator>Veuillen, Jean‐Yves</creator><creator>Mallet, Pierre</creator><creator>de Moraes, Isabelle Gomes</creator><creator>Dosenovic, Djordje</creator><creator>Gambarelli, Serge</creator><creator>Maurel, Vincent</creator><creator>Wright, Adrien</creator><creator>Tignon, Jérôme</creator><creator>Mangeney, Juliette</creator><creator>Ouerghi, Abdelkarim</creator><creator>Renard, Vincent</creator><creator>Mesple, Florie</creator><creator>Li, Jing</creator><creator>Bonell, Frédéric</creator><creator>Okuno, Hanako</creator><creator>Chshiev, Mairbek</creator><creator>George, Jean‐Marie</creator><creator>Jaffrès, Henri</creator><creator>Dhillon, Sukhdeep</creator><creator>Jamet, Matthieu</creator><general>Wiley-VCH Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0002-7374-6001</orcidid><orcidid>https://orcid.org/0000-0002-9283-3821</orcidid><orcidid>https://orcid.org/0000-0001-9232-7622</orcidid><orcidid>https://orcid.org/0000-0002-9867-0592</orcidid><orcidid>https://orcid.org/0000-0001-7296-0404</orcidid><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid><orcidid>https://orcid.org/0000-0002-4354-4257</orcidid><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0001-5498-4322</orcidid><orcidid>https://orcid.org/0000-0002-1898-2765</orcidid><orcidid>https://orcid.org/0000-0002-7599-9889</orcidid><orcidid>https://orcid.org/0000-0002-2730-1255</orcidid></search><sort><creationdate>202404</creationdate><title>Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe 2 Probed by THz Spintronic Emission</title><author>Abdukayumov, Khasan ; Mičica, Martin ; Ibrahim, Fatima ; Vojáček, Libor ; Vergnaud, Céline ; Marty, Alain ; Veuillen, Jean‐Yves ; Mallet, Pierre ; de Moraes, Isabelle Gomes ; Dosenovic, Djordje ; Gambarelli, Serge ; Maurel, Vincent ; Wright, Adrien ; Tignon, Jérôme ; Mangeney, Juliette ; Ouerghi, Abdelkarim ; Renard, Vincent ; Mesple, Florie ; Li, Jing ; Bonell, Frédéric ; Okuno, Hanako ; Chshiev, Mairbek ; George, Jean‐Marie ; Jaffrès, Henri ; Dhillon, Sukhdeep ; Jamet, Matthieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1181-ff4ca905655734e5528cc004f28f22cf7ee36e956a968d95ad6d4be4aa1ff0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdukayumov, Khasan</creatorcontrib><creatorcontrib>Mičica, Martin</creatorcontrib><creatorcontrib>Ibrahim, Fatima</creatorcontrib><creatorcontrib>Vojáček, Libor</creatorcontrib><creatorcontrib>Vergnaud, Céline</creatorcontrib><creatorcontrib>Marty, Alain</creatorcontrib><creatorcontrib>Veuillen, Jean‐Yves</creatorcontrib><creatorcontrib>Mallet, Pierre</creatorcontrib><creatorcontrib>de Moraes, Isabelle Gomes</creatorcontrib><creatorcontrib>Dosenovic, Djordje</creatorcontrib><creatorcontrib>Gambarelli, Serge</creatorcontrib><creatorcontrib>Maurel, Vincent</creatorcontrib><creatorcontrib>Wright, Adrien</creatorcontrib><creatorcontrib>Tignon, Jérôme</creatorcontrib><creatorcontrib>Mangeney, Juliette</creatorcontrib><creatorcontrib>Ouerghi, Abdelkarim</creatorcontrib><creatorcontrib>Renard, Vincent</creatorcontrib><creatorcontrib>Mesple, Florie</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Bonell, Frédéric</creatorcontrib><creatorcontrib>Okuno, Hanako</creatorcontrib><creatorcontrib>Chshiev, Mairbek</creatorcontrib><creatorcontrib>George, Jean‐Marie</creatorcontrib><creatorcontrib>Jaffrès, Henri</creatorcontrib><creatorcontrib>Dhillon, Sukhdeep</creatorcontrib><creatorcontrib>Jamet, Matthieu</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdukayumov, Khasan</au><au>Mičica, Martin</au><au>Ibrahim, Fatima</au><au>Vojáček, Libor</au><au>Vergnaud, Céline</au><au>Marty, Alain</au><au>Veuillen, Jean‐Yves</au><au>Mallet, Pierre</au><au>de Moraes, Isabelle Gomes</au><au>Dosenovic, Djordje</au><au>Gambarelli, Serge</au><au>Maurel, Vincent</au><au>Wright, Adrien</au><au>Tignon, Jérôme</au><au>Mangeney, Juliette</au><au>Ouerghi, Abdelkarim</au><au>Renard, Vincent</au><au>Mesple, Florie</au><au>Li, Jing</au><au>Bonell, Frédéric</au><au>Okuno, Hanako</au><au>Chshiev, Mairbek</au><au>George, Jean‐Marie</au><au>Jaffrès, Henri</au><au>Dhillon, Sukhdeep</au><au>Jamet, Matthieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe 2 Probed by THz Spintronic Emission</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>36</volume><issue>14</issue><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe 2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as‐grown PtSe 2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe 2 unaffected, resulting in well‐defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness‐dependent electronic structure of PtSe 2 allows the control of SCC. Indeed, the transition from the inverse Rashba–Edelstein effect (IREE) in 1–3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe 2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe 2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.</abstract><pub>Wiley-VCH Verlag</pub><doi>10.1002/adma.202304243</doi><orcidid>https://orcid.org/0000-0002-8247-4677</orcidid><orcidid>https://orcid.org/0000-0002-7374-6001</orcidid><orcidid>https://orcid.org/0000-0002-9283-3821</orcidid><orcidid>https://orcid.org/0000-0001-9232-7622</orcidid><orcidid>https://orcid.org/0000-0002-9867-0592</orcidid><orcidid>https://orcid.org/0000-0001-7296-0404</orcidid><orcidid>https://orcid.org/0000-0001-5709-6945</orcidid><orcidid>https://orcid.org/0000-0002-4354-4257</orcidid><orcidid>https://orcid.org/0000-0002-5487-9570</orcidid><orcidid>https://orcid.org/0000-0001-5498-4322</orcidid><orcidid>https://orcid.org/0000-0002-1898-2765</orcidid><orcidid>https://orcid.org/0000-0002-7599-9889</orcidid><orcidid>https://orcid.org/0000-0002-2730-1255</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-04, Vol.36 (14) |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04107294v1 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Condensed Matter Engineering Sciences Materials Science Micro and nanotechnologies Microelectronics Physics |
title | Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe 2 Probed by THz Spintronic Emission |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%E2%80%90Layer%20Controlled%20Transition%20from%20Inverse%20Rashba%E2%80%93Edelstein%20Effect%20to%20Inverse%20Spin%20Hall%20Effect%20in%202D%20PtSe%202%20Probed%20by%20THz%20Spintronic%20Emission&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Abdukayumov,%20Khasan&rft.date=2024-04&rft.volume=36&rft.issue=14&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202304243&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04107294v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1181-ff4ca905655734e5528cc004f28f22cf7ee36e956a968d95ad6d4be4aa1ff0ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |