Loading…
Reeling in the Whirlpool: the distance to M 51 clarified by Cepheids and the Type IIP SN 2005cs
Despite being one of the best-known galaxies, the distance to the Whirlpool Galaxy, M 51, is still debated. Current estimates range from 6.02 to 9.09 Mpc, and different methods yield discrepant results. No Cepheid distance has been published for M 51 to date. We aim to estimate a more reliable dista...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2023, Vol.678 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite being one of the best-known galaxies, the distance to the Whirlpool Galaxy, M 51, is still debated. Current estimates range from 6.02 to 9.09 Mpc, and different methods yield discrepant results. No Cepheid distance has been published for M 51 to date. We aim to estimate a more reliable distance to M 51 through two independent methods: Cepheid variables and their period-luminosity relation, and an augmented version of the expanding photosphere method (EPM) on the Type IIP SN 2005cs. For the Cepheid variables, we analyse a recently published HST catalogue of stars in M 51. By applying light curve and colour-magnitude diagram-based filtering, we select a high-quality sample of M 51 Cepheids to estimate the distance through the period-luminosity relation. For SN 2005cs, an emulator-based spectral fitting technique is applied, which allows for the fast and reliable estimation of physical parameters of the supernova atmosphere. We augment the established framework of EPM with these spectral models to obtain a precise distance to M 51. The two resulting distance estimates are D_Cep = 7.59 +/- 0.30 Mpc and D_2005cs = 7.34 +/- 0.39 Mpc using the Cepheid period-luminosity relation and the spectral modelling of SN 2005cs respectively. This is the first published Cepheid distance for this galaxy. Given that these two estimates are completely independent, one may combine them, which yields D_M51 = 7.50 +/- 0.24 Mpc (3.2% uncertainty). Our distance estimates are in agreement with most of the results obtained previously for M 51, while being more precise than the earlier counterparts. They are however significantly lower than the TRGB estimates, which are often adopted for the distance to this galaxy. The results highlight the importance of direct cross-checks between independent distance estimates for quantifying systematic uncertainties. |
---|---|
ISSN: | 0004-6361 1432-0756 |
DOI: | 10.1051/0004-6361/202346971 |