Loading…

TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution

A platinum complex, (CH3)2Pt(COD), is grafted via surface organometallic chemistry (SOMC) on morphology-controlled anatase TiO2 to generate single, isolated Pt atoms on TiO2 nano-platelets. The resulting material is characterized by FT-IR, high resolution scanning transmission electron microscopy (H...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (44), p.24429-24440
Main Authors: Jeantelot, Gabriel, Qureshi, Muhammad, Harb, Moussab, Ould-Chikh, Samy, Anjum, Dalaver H, Abou-Hamad, Edy, Aguilar-Tapia, Antonio, Jean-Louis Hazemann, Takanabe, Kazuhiro, Basset, Jean-Marie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A platinum complex, (CH3)2Pt(COD), is grafted via surface organometallic chemistry (SOMC) on morphology-controlled anatase TiO2 to generate single, isolated Pt atoms on TiO2 nano-platelets. The resulting material is characterized by FT-IR, high resolution scanning transmission electron microscopy (HRSTEM), NMR, and XAS, and then used to perform photocatalytic water splitting. The photocatalyst with SOMC-grafted Pt shows superior performance in photocatalytic hydrogen evolution and strongly suppresses the backwards reaction of H2 and O2 forming H2O under dark conditions, compared to the photocatalyst prepared by impregnation at the same Pt loading. However, single Pt atoms on this surface also rapidly coalesce into nanoparticles under photocatalytic conditions. It is also found that adsorption of CO gas at room temperature also triggers the aggregation of Pt single atoms into nanoparticles. A detailed mechanism is investigated for the mobility of Pt in the formation of its carbonyls using density functional theory (DFT) calculations.
ISSN:1463-9076
1463-9084
DOI:10.1039/c9cp04470a