Loading…

Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media

Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2007, Vol.40 (4), p.771-789
Main Authors: Lévesque, Martin, Gilchrist, Michael, Bouleau, Nicolas, Derrien, Katell, Baptiste, Didier
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 789
container_issue 4
container_start_page 771
container_title Computational mechanics
container_volume 40
creator Lévesque, Martin
Gilchrist, Michael
Bouleau, Nicolas
Derrien, Katell
Baptiste, Didier
description Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases.
doi_str_mv 10.1007/s00466-006-0138-6
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04180044v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04180044v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04180044v13</originalsourceid><addsrcrecordid>eNqVj71KxEAUhQdxwej6AHbTWkTvbH4tZVG2WKzsw2VyY67MT5iJgbXad_ANfRJH2BfY4nDg4zvFEeJOwYMCaB4jQFnXOUCKKtq8vhCZKotNDk-b8lJkoJo2b-qmuhLXMX4CqKotqkwc374sBdZoJLuFQmTvpB_kPJLc42RQ0-_xZ4shJj4HdHHwwUqcJsPUy9nL0Vv_QY6_cT5tk9V7aw4yELuk6yQadoRBLhy1J4NxZi0t9YxrsRrQRLo99Y24f3153-7yEU03BbYYDp1H7nbP--6fQanadLZcVHGO-wfEo11b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</title><source>Springer Link</source><creator>Lévesque, Martin ; Gilchrist, Michael ; Bouleau, Nicolas ; Derrien, Katell ; Baptiste, Didier</creator><creatorcontrib>Lévesque, Martin ; Gilchrist, Michael ; Bouleau, Nicolas ; Derrien, Katell ; Baptiste, Didier</creatorcontrib><description>Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-006-0138-6</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Engineering Sciences ; Mathematical Physics ; Mathematics ; Mechanics ; Mechanics of materials</subject><ispartof>Computational mechanics, 2007, Vol.40 (4), p.771-789</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04180044$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lévesque, Martin</creatorcontrib><creatorcontrib>Gilchrist, Michael</creatorcontrib><creatorcontrib>Bouleau, Nicolas</creatorcontrib><creatorcontrib>Derrien, Katell</creatorcontrib><creatorcontrib>Baptiste, Didier</creatorcontrib><title>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</title><title>Computational mechanics</title><description>Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases.</description><subject>Engineering Sciences</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqVj71KxEAUhQdxwej6AHbTWkTvbH4tZVG2WKzsw2VyY67MT5iJgbXad_ANfRJH2BfY4nDg4zvFEeJOwYMCaB4jQFnXOUCKKtq8vhCZKotNDk-b8lJkoJo2b-qmuhLXMX4CqKotqkwc374sBdZoJLuFQmTvpB_kPJLc42RQ0-_xZ4shJj4HdHHwwUqcJsPUy9nL0Vv_QY6_cT5tk9V7aw4yELuk6yQadoRBLhy1J4NxZi0t9YxrsRrQRLo99Y24f3153-7yEU03BbYYDp1H7nbP--6fQanadLZcVHGO-wfEo11b</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Lévesque, Martin</creator><creator>Gilchrist, Michael</creator><creator>Bouleau, Nicolas</creator><creator>Derrien, Katell</creator><creator>Baptiste, Didier</creator><general>Springer Verlag</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2007</creationdate><title>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</title><author>Lévesque, Martin ; Gilchrist, Michael ; Bouleau, Nicolas ; Derrien, Katell ; Baptiste, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04180044v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Engineering Sciences</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lévesque, Martin</creatorcontrib><creatorcontrib>Gilchrist, Michael</creatorcontrib><creatorcontrib>Bouleau, Nicolas</creatorcontrib><creatorcontrib>Derrien, Katell</creatorcontrib><creatorcontrib>Baptiste, Didier</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lévesque, Martin</au><au>Gilchrist, Michael</au><au>Bouleau, Nicolas</au><au>Derrien, Katell</au><au>Baptiste, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</atitle><jtitle>Computational mechanics</jtitle><date>2007</date><risdate>2007</risdate><volume>40</volume><issue>4</issue><spage>771</spage><epage>789</epage><pages>771-789</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases.</abstract><pub>Springer Verlag</pub><doi>10.1007/s00466-006-0138-6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2007, Vol.40 (4), p.771-789
issn 0178-7675
1432-0924
language eng
recordid cdi_hal_primary_oai_HAL_hal_04180044v1
source Springer Link
subjects Engineering Sciences
Mathematical Physics
Mathematics
Mechanics
Mechanics of materials
title Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20inversion%20of%20the%20Laplace%E2%80%93Carson%20transform%20applied%20to%20homogenization%20of%20randomly%20reinforced%20linear%20viscoelastic%20media&rft.jtitle=Computational%20mechanics&rft.au=L%C3%A9vesque,%20Martin&rft.date=2007&rft.volume=40&rft.issue=4&rft.spage=771&rft.epage=789&rft.pages=771-789&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-006-0138-6&rft_dat=%3Chal%3Eoai_HAL_hal_04180044v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_04180044v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true