Loading…
Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media
Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the...
Saved in:
Published in: | Computational mechanics 2007, Vol.40 (4), p.771-789 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 789 |
container_issue | 4 |
container_start_page | 771 |
container_title | Computational mechanics |
container_volume | 40 |
creator | Lévesque, Martin Gilchrist, Michael Bouleau, Nicolas Derrien, Katell Baptiste, Didier |
description | Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases. |
doi_str_mv | 10.1007/s00466-006-0138-6 |
format | article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04180044v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04180044v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04180044v13</originalsourceid><addsrcrecordid>eNqVj71KxEAUhQdxwej6AHbTWkTvbH4tZVG2WKzsw2VyY67MT5iJgbXad_ANfRJH2BfY4nDg4zvFEeJOwYMCaB4jQFnXOUCKKtq8vhCZKotNDk-b8lJkoJo2b-qmuhLXMX4CqKotqkwc374sBdZoJLuFQmTvpB_kPJLc42RQ0-_xZ4shJj4HdHHwwUqcJsPUy9nL0Vv_QY6_cT5tk9V7aw4yELuk6yQadoRBLhy1J4NxZi0t9YxrsRrQRLo99Y24f3153-7yEU03BbYYDp1H7nbP--6fQanadLZcVHGO-wfEo11b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</title><source>Springer Link</source><creator>Lévesque, Martin ; Gilchrist, Michael ; Bouleau, Nicolas ; Derrien, Katell ; Baptiste, Didier</creator><creatorcontrib>Lévesque, Martin ; Gilchrist, Michael ; Bouleau, Nicolas ; Derrien, Katell ; Baptiste, Didier</creatorcontrib><description>Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-006-0138-6</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Engineering Sciences ; Mathematical Physics ; Mathematics ; Mechanics ; Mechanics of materials</subject><ispartof>Computational mechanics, 2007, Vol.40 (4), p.771-789</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04180044$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lévesque, Martin</creatorcontrib><creatorcontrib>Gilchrist, Michael</creatorcontrib><creatorcontrib>Bouleau, Nicolas</creatorcontrib><creatorcontrib>Derrien, Katell</creatorcontrib><creatorcontrib>Baptiste, Didier</creatorcontrib><title>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</title><title>Computational mechanics</title><description>Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases.</description><subject>Engineering Sciences</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqVj71KxEAUhQdxwej6AHbTWkTvbH4tZVG2WKzsw2VyY67MT5iJgbXad_ANfRJH2BfY4nDg4zvFEeJOwYMCaB4jQFnXOUCKKtq8vhCZKotNDk-b8lJkoJo2b-qmuhLXMX4CqKotqkwc374sBdZoJLuFQmTvpB_kPJLc42RQ0-_xZ4shJj4HdHHwwUqcJsPUy9nL0Vv_QY6_cT5tk9V7aw4yELuk6yQadoRBLhy1J4NxZi0t9YxrsRrQRLo99Y24f3153-7yEU03BbYYDp1H7nbP--6fQanadLZcVHGO-wfEo11b</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Lévesque, Martin</creator><creator>Gilchrist, Michael</creator><creator>Bouleau, Nicolas</creator><creator>Derrien, Katell</creator><creator>Baptiste, Didier</creator><general>Springer Verlag</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>2007</creationdate><title>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</title><author>Lévesque, Martin ; Gilchrist, Michael ; Bouleau, Nicolas ; Derrien, Katell ; Baptiste, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04180044v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Engineering Sciences</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lévesque, Martin</creatorcontrib><creatorcontrib>Gilchrist, Michael</creatorcontrib><creatorcontrib>Bouleau, Nicolas</creatorcontrib><creatorcontrib>Derrien, Katell</creatorcontrib><creatorcontrib>Baptiste, Didier</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lévesque, Martin</au><au>Gilchrist, Michael</au><au>Bouleau, Nicolas</au><au>Derrien, Katell</au><au>Baptiste, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media</atitle><jtitle>Computational mechanics</jtitle><date>2007</date><risdate>2007</risdate><volume>40</volume><issue>4</issue><spage>771</spage><epage>789</epage><pages>771-789</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Homogenization of linear viscoelastic materials is possible using the viscoelastic correspondence principle (VCP) and homogenization solutions obtained for linear elastic materials. The VCP involves a Laplace–Carson Transform (LCT) of the material phases constitutive theories and in most cases, the time domain solution must be obtained through numerical inversion of the LCT. The objective of this paper is to develop and test numerical algorithms to invert LCT which are encountered in the context of homogenization of linear viscoelastic materials. The homogenized properties, as well as the stress concentration and strain localization tensors, are considered. The algorithms suggested have the following two key features: (1) an acceptance criterion which allows to reject solutions of unacceptable accuracy and (2) some algorithms lead to solutions for the homogenized properties where the thermodynamics restrictions imposed on linear viscoelastic materials are encountered. These two features are an improvement over the previous algorithms. The algorithms are tested on many examples and the accuracy of the inversion is excellent in most cases.</abstract><pub>Springer Verlag</pub><doi>10.1007/s00466-006-0138-6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2007, Vol.40 (4), p.771-789 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04180044v1 |
source | Springer Link |
subjects | Engineering Sciences Mathematical Physics Mathematics Mechanics Mechanics of materials |
title | Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20inversion%20of%20the%20Laplace%E2%80%93Carson%20transform%20applied%20to%20homogenization%20of%20randomly%20reinforced%20linear%20viscoelastic%20media&rft.jtitle=Computational%20mechanics&rft.au=L%C3%A9vesque,%20Martin&rft.date=2007&rft.volume=40&rft.issue=4&rft.spage=771&rft.epage=789&rft.pages=771-789&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-006-0138-6&rft_dat=%3Chal%3Eoai_HAL_hal_04180044v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_04180044v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |