Loading…

Qualitative analysis of solutions to discrete static contact problems with Coulomb friction

We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction F . Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutio...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2012-01, Vol.205, p.149-161
Main Authors: Haslinger, J., Janovský, V., Ligurský, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3
cites cdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3
container_end_page 161
container_issue
container_start_page 149
container_title Computer methods in applied mechanics and engineering
container_volume 205
creator Haslinger, J.
Janovský, V.
Ligurský, T.
description We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction F . Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.
doi_str_mv 10.1016/j.cma.2010.09.010
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04184077v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782510002690</els_id><sourcerecordid>1671377276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLssddExSR9JcSWDLxgQQVcuwm2SYoa00SQdmX9vyohLsznk8p3LPQehC0qWlNDmerNUAywZyX_SLrMcoAUVvC0YLcUhWhBS1QUXrD5GJzFuSH6CsgV6f5nA2QTJbg2GEdwu2oh9j6N3U7J-jDh5rG1UwSSD40wqrPyYQCX8GXznzBDxt00feOUn54cO98Gq2XqGjnpw0Zz_6il6u797XT0W6-eHp9XtulBlU6VC11UrNO217rqOCE5KBppXpdZMlISwngGQptMNzXNTdaKtgTOTc_UKaujKU3S13_sBTn4GO0DYSQ9WPt6u5TwjFRUV4XxLM3u5Z_PpX5OJSQ45m3EORuOnKGnDack5401G6R5VwccYTP-3mxI5ly43Mpcu59IlaWWW7LnZe0zOu7UmyKisGZXRNhiVpPb2H_cP-oiLBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671377276</pqid></control><display><type>article</type><title>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Haslinger, J. ; Janovský, V. ; Ligurský, T.</creator><creatorcontrib>Haslinger, J. ; Janovský, V. ; Ligurský, T.</creatorcontrib><description>We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction F . Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2010.09.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Coefficient of friction ; Contact ; Contact problem ; Coulomb friction ; Local Lipschitz continuous branches of solutions ; Mathematical models ; Mathematics ; Mechanics ; Mixed finite element formulation ; Numerical Analysis ; Physics ; Piecewise smooth continuation methods ; Qualitative analysis ; Solid mechanics ; Theorems</subject><ispartof>Computer methods in applied mechanics and engineering, 2012-01, Vol.205, p.149-161</ispartof><rights>2010 Elsevier B.V.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</citedby><cites>FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</cites><orcidid>0000-0002-4283-2644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04184077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haslinger, J.</creatorcontrib><creatorcontrib>Janovský, V.</creatorcontrib><creatorcontrib>Ligurský, T.</creatorcontrib><title>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</title><title>Computer methods in applied mechanics and engineering</title><description>We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction F . Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.</description><subject>Algorithms</subject><subject>Coefficient of friction</subject><subject>Contact</subject><subject>Contact problem</subject><subject>Coulomb friction</subject><subject>Local Lipschitz continuous branches of solutions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Mixed finite element formulation</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Piecewise smooth continuation methods</subject><subject>Qualitative analysis</subject><subject>Solid mechanics</subject><subject>Theorems</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLssddExSR9JcSWDLxgQQVcuwm2SYoa00SQdmX9vyohLsznk8p3LPQehC0qWlNDmerNUAywZyX_SLrMcoAUVvC0YLcUhWhBS1QUXrD5GJzFuSH6CsgV6f5nA2QTJbg2GEdwu2oh9j6N3U7J-jDh5rG1UwSSD40wqrPyYQCX8GXznzBDxt00feOUn54cO98Gq2XqGjnpw0Zz_6il6u797XT0W6-eHp9XtulBlU6VC11UrNO217rqOCE5KBppXpdZMlISwngGQptMNzXNTdaKtgTOTc_UKaujKU3S13_sBTn4GO0DYSQ9WPt6u5TwjFRUV4XxLM3u5Z_PpX5OJSQ45m3EORuOnKGnDack5401G6R5VwccYTP-3mxI5ly43Mpcu59IlaWWW7LnZe0zOu7UmyKisGZXRNhiVpPb2H_cP-oiLBQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Haslinger, J.</creator><creator>Janovský, V.</creator><creator>Ligurský, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4283-2644</orcidid></search><sort><creationdate>20120101</creationdate><title>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</title><author>Haslinger, J. ; Janovský, V. ; Ligurský, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Coefficient of friction</topic><topic>Contact</topic><topic>Contact problem</topic><topic>Coulomb friction</topic><topic>Local Lipschitz continuous branches of solutions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Mixed finite element formulation</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Piecewise smooth continuation methods</topic><topic>Qualitative analysis</topic><topic>Solid mechanics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haslinger, J.</creatorcontrib><creatorcontrib>Janovský, V.</creatorcontrib><creatorcontrib>Ligurský, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haslinger, J.</au><au>Janovský, V.</au><au>Ligurský, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>205</volume><spage>149</spage><epage>161</epage><pages>149-161</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction F . Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2010.09.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4283-2644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2012-01, Vol.205, p.149-161
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_04184077v1
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Algorithms
Coefficient of friction
Contact
Contact problem
Coulomb friction
Local Lipschitz continuous branches of solutions
Mathematical models
Mathematics
Mechanics
Mixed finite element formulation
Numerical Analysis
Physics
Piecewise smooth continuation methods
Qualitative analysis
Solid mechanics
Theorems
title Qualitative analysis of solutions to discrete static contact problems with Coulomb friction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualitative%20analysis%20of%20solutions%20to%20discrete%20static%20contact%20problems%20with%20Coulomb%20friction&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Haslinger,%20J.&rft.date=2012-01-01&rft.volume=205&rft.spage=149&rft.epage=161&rft.pages=149-161&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2010.09.010&rft_dat=%3Cproquest_hal_p%3E1671377276%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671377276&rft_id=info:pmid/&rfr_iscdi=true