Loading…
Qualitative analysis of solutions to discrete static contact problems with Coulomb friction
We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction F . Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutio...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2012-01, Vol.205, p.149-161 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3 |
container_end_page | 161 |
container_issue | |
container_start_page | 149 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 205 |
creator | Haslinger, J. Janovský, V. Ligurský, T. |
description | We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction
F
. Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed. |
doi_str_mv | 10.1016/j.cma.2010.09.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04184077v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782510002690</els_id><sourcerecordid>1671377276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLssddExSR9JcSWDLxgQQVcuwm2SYoa00SQdmX9vyohLsznk8p3LPQehC0qWlNDmerNUAywZyX_SLrMcoAUVvC0YLcUhWhBS1QUXrD5GJzFuSH6CsgV6f5nA2QTJbg2GEdwu2oh9j6N3U7J-jDh5rG1UwSSD40wqrPyYQCX8GXznzBDxt00feOUn54cO98Gq2XqGjnpw0Zz_6il6u797XT0W6-eHp9XtulBlU6VC11UrNO217rqOCE5KBppXpdZMlISwngGQptMNzXNTdaKtgTOTc_UKaujKU3S13_sBTn4GO0DYSQ9WPt6u5TwjFRUV4XxLM3u5Z_PpX5OJSQ45m3EORuOnKGnDack5401G6R5VwccYTP-3mxI5ly43Mpcu59IlaWWW7LnZe0zOu7UmyKisGZXRNhiVpPb2H_cP-oiLBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671377276</pqid></control><display><type>article</type><title>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Haslinger, J. ; Janovský, V. ; Ligurský, T.</creator><creatorcontrib>Haslinger, J. ; Janovský, V. ; Ligurský, T.</creatorcontrib><description>We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction
F
. Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2010.09.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Coefficient of friction ; Contact ; Contact problem ; Coulomb friction ; Local Lipschitz continuous branches of solutions ; Mathematical models ; Mathematics ; Mechanics ; Mixed finite element formulation ; Numerical Analysis ; Physics ; Piecewise smooth continuation methods ; Qualitative analysis ; Solid mechanics ; Theorems</subject><ispartof>Computer methods in applied mechanics and engineering, 2012-01, Vol.205, p.149-161</ispartof><rights>2010 Elsevier B.V.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</citedby><cites>FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</cites><orcidid>0000-0002-4283-2644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04184077$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haslinger, J.</creatorcontrib><creatorcontrib>Janovský, V.</creatorcontrib><creatorcontrib>Ligurský, T.</creatorcontrib><title>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</title><title>Computer methods in applied mechanics and engineering</title><description>We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction
F
. Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.</description><subject>Algorithms</subject><subject>Coefficient of friction</subject><subject>Contact</subject><subject>Contact problem</subject><subject>Coulomb friction</subject><subject>Local Lipschitz continuous branches of solutions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Mixed finite element formulation</subject><subject>Numerical Analysis</subject><subject>Physics</subject><subject>Piecewise smooth continuation methods</subject><subject>Qualitative analysis</subject><subject>Solid mechanics</subject><subject>Theorems</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLssddExSR9JcSWDLxgQQVcuwm2SYoa00SQdmX9vyohLsznk8p3LPQehC0qWlNDmerNUAywZyX_SLrMcoAUVvC0YLcUhWhBS1QUXrD5GJzFuSH6CsgV6f5nA2QTJbg2GEdwu2oh9j6N3U7J-jDh5rG1UwSSD40wqrPyYQCX8GXznzBDxt00feOUn54cO98Gq2XqGjnpw0Zz_6il6u797XT0W6-eHp9XtulBlU6VC11UrNO217rqOCE5KBppXpdZMlISwngGQptMNzXNTdaKtgTOTc_UKaujKU3S13_sBTn4GO0DYSQ9WPt6u5TwjFRUV4XxLM3u5Z_PpX5OJSQ45m3EORuOnKGnDack5401G6R5VwccYTP-3mxI5ly43Mpcu59IlaWWW7LnZe0zOu7UmyKisGZXRNhiVpPb2H_cP-oiLBQ</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Haslinger, J.</creator><creator>Janovský, V.</creator><creator>Ligurský, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4283-2644</orcidid></search><sort><creationdate>20120101</creationdate><title>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</title><author>Haslinger, J. ; Janovský, V. ; Ligurský, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Coefficient of friction</topic><topic>Contact</topic><topic>Contact problem</topic><topic>Coulomb friction</topic><topic>Local Lipschitz continuous branches of solutions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Mixed finite element formulation</topic><topic>Numerical Analysis</topic><topic>Physics</topic><topic>Piecewise smooth continuation methods</topic><topic>Qualitative analysis</topic><topic>Solid mechanics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haslinger, J.</creatorcontrib><creatorcontrib>Janovský, V.</creatorcontrib><creatorcontrib>Ligurský, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haslinger, J.</au><au>Janovský, V.</au><au>Ligurský, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualitative analysis of solutions to discrete static contact problems with Coulomb friction</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>205</volume><spage>149</spage><epage>161</epage><pages>149-161</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We analyze properties of solutions to discrete contact problems with Coulomb friction which are parametrized by the coefficient of friction
F
. Using a generalized variant of the implicit-function theorem we establish conditions under which there exists a local Lipschitz continuous branch of solutions around a reference point. Finally, a piecewise smooth continuation algorithm which allows to follow such branches of solutions is proposed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2010.09.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4283-2644</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2012-01, Vol.205, p.149-161 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04184077v1 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Algorithms Coefficient of friction Contact Contact problem Coulomb friction Local Lipschitz continuous branches of solutions Mathematical models Mathematics Mechanics Mixed finite element formulation Numerical Analysis Physics Piecewise smooth continuation methods Qualitative analysis Solid mechanics Theorems |
title | Qualitative analysis of solutions to discrete static contact problems with Coulomb friction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualitative%20analysis%20of%20solutions%20to%20discrete%20static%20contact%20problems%20with%20Coulomb%20friction&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Haslinger,%20J.&rft.date=2012-01-01&rft.volume=205&rft.spage=149&rft.epage=161&rft.pages=149-161&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2010.09.010&rft_dat=%3Cproquest_hal_p%3E1671377276%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-d5498d1fddbbb087032ad743dd283002f2aa06bd612ade4b895a72e138fca5ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671377276&rft_id=info:pmid/&rfr_iscdi=true |