Loading…

Blowing big bubbles

Although street artists have the know-how to blow bubbles over one meter in length, the bubble width is typically determined by the size of the hoop, or wand they use. In this article we explore a regime in which, by blowing gently downwards, we generate bubbles with radii up to ten times larger tha...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2021-03, Vol.17 (9), p.244-249
Main Authors: Hamlett, Christopher A. E, Boniface, Dolachai N, Salonen, Anniina, Rio, Emmanuelle, Perkins, Connor, Clark, Alastair, Nyugen, Sang, Fairhurst, David J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although street artists have the know-how to blow bubbles over one meter in length, the bubble width is typically determined by the size of the hoop, or wand they use. In this article we explore a regime in which, by blowing gently downwards, we generate bubbles with radii up to ten times larger than the wand. We observe the big bubbles at lowest air speeds, analogous to the dripping mode observed in droplet formation. We also explore the impact of the surfactant chosen to stabilize the bubbles. We are able to create bubbles of comparable size using either Fairy liquid, a commercially available detergent often used by street artists, or sodium dodecyl sulfate (SDS) solutions. The bubbles obtained from Fairy liquid detach from the wand and are stable for several seconds, however those from SDS tend to burst just before detachment. The radius of blown soap bubbles is very sensitive to the normalised air speed (Weber number We), growing up to ten times the wand radius in the slow speed dripping mode and reducing to just double the wand radius in the high speed jetting mode.
ISSN:1744-683X
1744-6848
DOI:10.1039/d0sm01893g