Loading…

Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis

Heart rate variability analysis is a recognized non-invasive tool that is used to assess autonomic nervous system regulation in various clinical settings and medical conditions. A wide variety of HRV analysis methods have been proposed, but they all require a certain number of cardiac beats interval...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical monitoring and computing 2020-08, Vol.34 (4), p.743-752
Main Authors: Charlier, P., Cabon, M., Herman, C., Benouna, F., Logier, R., Houfflin-Debarge, V., Jeanne, M., De Jonckheere, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-a768674844ff0ece0a219544f8273fd5dffe4a6f3939340fb279e8b26fb96fdc3
cites cdi_FETCH-LOGICAL-c409t-a768674844ff0ece0a219544f8273fd5dffe4a6f3939340fb279e8b26fb96fdc3
container_end_page 752
container_issue 4
container_start_page 743
container_title Journal of clinical monitoring and computing
container_volume 34
creator Charlier, P.
Cabon, M.
Herman, C.
Benouna, F.
Logier, R.
Houfflin-Debarge, V.
Jeanne, M.
De Jonckheere, J.
description Heart rate variability analysis is a recognized non-invasive tool that is used to assess autonomic nervous system regulation in various clinical settings and medical conditions. A wide variety of HRV analysis methods have been proposed, but they all require a certain number of cardiac beats intervals. There are many ways to record cardiac activity: electrocardiography, phonocardiography, plethysmocardiography, seismocardiography. However, the feasibility of performing HRV analysis with these technologies and particularly their ability to detect autonomic nervous system changes still has to be studied. In this study, we developed a technology allowing the simultaneous monitoring of electrocardiography, phonocardiography, seismocardiography, photoplethysmocardiography and piezoplethysmocardiography and investigated whether these sensors could be used for HRV analysis. We therefore tested the evolution of several HRV parameters computed from several sensors before, during and after a postural change. The main findings of our study is that even if most sensors were suitable for mean HR computation, some of them demonstrated limited agreement for several HRV analyses methods. We also demonstrated that piezoplethysmocardiography showed better agreement with ECG than other sensors for most HRV indexes.
doi_str_mv 10.1007/s10877-019-00382-0
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04222433v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2281577176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-a768674844ff0ece0a219544f8273fd5dffe4a6f3939340fb279e8b26fb96fdc3</originalsourceid><addsrcrecordid>eNp9kUtv3CAUhVHVqnm0f6CLCqmbduHk8jDgZTRqm0ojZdOsEcYwQ4TNBOxI8-9L4jSRuqhYAJfvHC4chD4RuCAA8rIQUFI2QLoGgCnawBt0SlrJGioIf1vXTMmGMJAn6KyUOwDoFCPv0QkjXDDF2lPUb9J4MDmUNOHk8bjEORyiw9bkIRiLS9hNJmJj75dQwhwqNju7n1JMu-AK9injvTN5xtnMDj9UK9OHGOYjNlV4LKF8QO-8icV9fJ7P0e2P778318325uevzdW2sRy6uTFSKCG54tx7cNaBoaRr605RyfzQDt47boRnXR0cfE9l51RPhe874QfLztG31Xdvoj7kMJp81MkEfX211Y814JRSztgDqezXlT3kdL-4MusxFOtiNJNLS9GUKtoCa4Wq6Jd_0Lu05Pq2J6p-tyRSVIqulM2plOz8SwcE9GNaek1L17T0U1oaqujzs_XSj254kfyNpwJsBUo9mnYuv979H9s_VhCf5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2281577176</pqid></control><display><type>article</type><title>Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis</title><source>Springer Link</source><creator>Charlier, P. ; Cabon, M. ; Herman, C. ; Benouna, F. ; Logier, R. ; Houfflin-Debarge, V. ; Jeanne, M. ; De Jonckheere, J.</creator><creatorcontrib>Charlier, P. ; Cabon, M. ; Herman, C. ; Benouna, F. ; Logier, R. ; Houfflin-Debarge, V. ; Jeanne, M. ; De Jonckheere, J.</creatorcontrib><description>Heart rate variability analysis is a recognized non-invasive tool that is used to assess autonomic nervous system regulation in various clinical settings and medical conditions. A wide variety of HRV analysis methods have been proposed, but they all require a certain number of cardiac beats intervals. There are many ways to record cardiac activity: electrocardiography, phonocardiography, plethysmocardiography, seismocardiography. However, the feasibility of performing HRV analysis with these technologies and particularly their ability to detect autonomic nervous system changes still has to be studied. In this study, we developed a technology allowing the simultaneous monitoring of electrocardiography, phonocardiography, seismocardiography, photoplethysmocardiography and piezoplethysmocardiography and investigated whether these sensors could be used for HRV analysis. We therefore tested the evolution of several HRV parameters computed from several sensors before, during and after a postural change. The main findings of our study is that even if most sensors were suitable for mean HR computation, some of them demonstrated limited agreement for several HRV analyses methods. We also demonstrated that piezoplethysmocardiography showed better agreement with ECG than other sensors for most HRV indexes.</description><identifier>ISSN: 1387-1307</identifier><identifier>EISSN: 1573-2614</identifier><identifier>DOI: 10.1007/s10877-019-00382-0</identifier><identifier>PMID: 31463835</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anesthesiology ; Autonomic nervous system ; Change detection ; Critical Care Medicine ; Electrocardiography ; Feasibility studies ; Health Sciences ; Heart rate ; Intensive ; Life Sciences ; Medicine ; Medicine &amp; Public Health ; Nervous system ; Original Research ; Phonocardiography ; Seismocardiography ; Sensors ; Statistics for Life Sciences</subject><ispartof>Journal of clinical monitoring and computing, 2020-08, Vol.34 (4), p.743-752</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-a768674844ff0ece0a219544f8273fd5dffe4a6f3939340fb279e8b26fb96fdc3</citedby><cites>FETCH-LOGICAL-c409t-a768674844ff0ece0a219544f8273fd5dffe4a6f3939340fb279e8b26fb96fdc3</cites><orcidid>0000-0002-3727-9434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31463835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lille.fr/hal-04222433$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Charlier, P.</creatorcontrib><creatorcontrib>Cabon, M.</creatorcontrib><creatorcontrib>Herman, C.</creatorcontrib><creatorcontrib>Benouna, F.</creatorcontrib><creatorcontrib>Logier, R.</creatorcontrib><creatorcontrib>Houfflin-Debarge, V.</creatorcontrib><creatorcontrib>Jeanne, M.</creatorcontrib><creatorcontrib>De Jonckheere, J.</creatorcontrib><title>Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis</title><title>Journal of clinical monitoring and computing</title><addtitle>J Clin Monit Comput</addtitle><addtitle>J Clin Monit Comput</addtitle><description>Heart rate variability analysis is a recognized non-invasive tool that is used to assess autonomic nervous system regulation in various clinical settings and medical conditions. A wide variety of HRV analysis methods have been proposed, but they all require a certain number of cardiac beats intervals. There are many ways to record cardiac activity: electrocardiography, phonocardiography, plethysmocardiography, seismocardiography. However, the feasibility of performing HRV analysis with these technologies and particularly their ability to detect autonomic nervous system changes still has to be studied. In this study, we developed a technology allowing the simultaneous monitoring of electrocardiography, phonocardiography, seismocardiography, photoplethysmocardiography and piezoplethysmocardiography and investigated whether these sensors could be used for HRV analysis. We therefore tested the evolution of several HRV parameters computed from several sensors before, during and after a postural change. The main findings of our study is that even if most sensors were suitable for mean HR computation, some of them demonstrated limited agreement for several HRV analyses methods. We also demonstrated that piezoplethysmocardiography showed better agreement with ECG than other sensors for most HRV indexes.</description><subject>Anesthesiology</subject><subject>Autonomic nervous system</subject><subject>Change detection</subject><subject>Critical Care Medicine</subject><subject>Electrocardiography</subject><subject>Feasibility studies</subject><subject>Health Sciences</subject><subject>Heart rate</subject><subject>Intensive</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nervous system</subject><subject>Original Research</subject><subject>Phonocardiography</subject><subject>Seismocardiography</subject><subject>Sensors</subject><subject>Statistics for Life Sciences</subject><issn>1387-1307</issn><issn>1573-2614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv3CAUhVHVqnm0f6CLCqmbduHk8jDgZTRqm0ojZdOsEcYwQ4TNBOxI8-9L4jSRuqhYAJfvHC4chD4RuCAA8rIQUFI2QLoGgCnawBt0SlrJGioIf1vXTMmGMJAn6KyUOwDoFCPv0QkjXDDF2lPUb9J4MDmUNOHk8bjEORyiw9bkIRiLS9hNJmJj75dQwhwqNju7n1JMu-AK9injvTN5xtnMDj9UK9OHGOYjNlV4LKF8QO-8icV9fJ7P0e2P778318325uevzdW2sRy6uTFSKCG54tx7cNaBoaRr605RyfzQDt47boRnXR0cfE9l51RPhe874QfLztG31Xdvoj7kMJp81MkEfX211Y814JRSztgDqezXlT3kdL-4MusxFOtiNJNLS9GUKtoCa4Wq6Jd_0Lu05Pq2J6p-tyRSVIqulM2plOz8SwcE9GNaek1L17T0U1oaqujzs_XSj254kfyNpwJsBUo9mnYuv979H9s_VhCf5Q</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Charlier, P.</creator><creator>Cabon, M.</creator><creator>Herman, C.</creator><creator>Benouna, F.</creator><creator>Logier, R.</creator><creator>Houfflin-Debarge, V.</creator><creator>Jeanne, M.</creator><creator>De Jonckheere, J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3727-9434</orcidid></search><sort><creationdate>20200801</creationdate><title>Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis</title><author>Charlier, P. ; Cabon, M. ; Herman, C. ; Benouna, F. ; Logier, R. ; Houfflin-Debarge, V. ; Jeanne, M. ; De Jonckheere, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-a768674844ff0ece0a219544f8273fd5dffe4a6f3939340fb279e8b26fb96fdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anesthesiology</topic><topic>Autonomic nervous system</topic><topic>Change detection</topic><topic>Critical Care Medicine</topic><topic>Electrocardiography</topic><topic>Feasibility studies</topic><topic>Health Sciences</topic><topic>Heart rate</topic><topic>Intensive</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nervous system</topic><topic>Original Research</topic><topic>Phonocardiography</topic><topic>Seismocardiography</topic><topic>Sensors</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charlier, P.</creatorcontrib><creatorcontrib>Cabon, M.</creatorcontrib><creatorcontrib>Herman, C.</creatorcontrib><creatorcontrib>Benouna, F.</creatorcontrib><creatorcontrib>Logier, R.</creatorcontrib><creatorcontrib>Houfflin-Debarge, V.</creatorcontrib><creatorcontrib>Jeanne, M.</creatorcontrib><creatorcontrib>De Jonckheere, J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of clinical monitoring and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charlier, P.</au><au>Cabon, M.</au><au>Herman, C.</au><au>Benouna, F.</au><au>Logier, R.</au><au>Houfflin-Debarge, V.</au><au>Jeanne, M.</au><au>De Jonckheere, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis</atitle><jtitle>Journal of clinical monitoring and computing</jtitle><stitle>J Clin Monit Comput</stitle><addtitle>J Clin Monit Comput</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>34</volume><issue>4</issue><spage>743</spage><epage>752</epage><pages>743-752</pages><issn>1387-1307</issn><eissn>1573-2614</eissn><abstract>Heart rate variability analysis is a recognized non-invasive tool that is used to assess autonomic nervous system regulation in various clinical settings and medical conditions. A wide variety of HRV analysis methods have been proposed, but they all require a certain number of cardiac beats intervals. There are many ways to record cardiac activity: electrocardiography, phonocardiography, plethysmocardiography, seismocardiography. However, the feasibility of performing HRV analysis with these technologies and particularly their ability to detect autonomic nervous system changes still has to be studied. In this study, we developed a technology allowing the simultaneous monitoring of electrocardiography, phonocardiography, seismocardiography, photoplethysmocardiography and piezoplethysmocardiography and investigated whether these sensors could be used for HRV analysis. We therefore tested the evolution of several HRV parameters computed from several sensors before, during and after a postural change. The main findings of our study is that even if most sensors were suitable for mean HR computation, some of them demonstrated limited agreement for several HRV analyses methods. We also demonstrated that piezoplethysmocardiography showed better agreement with ECG than other sensors for most HRV indexes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31463835</pmid><doi>10.1007/s10877-019-00382-0</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3727-9434</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-1307
ispartof Journal of clinical monitoring and computing, 2020-08, Vol.34 (4), p.743-752
issn 1387-1307
1573-2614
language eng
recordid cdi_hal_primary_oai_HAL_hal_04222433v1
source Springer Link
subjects Anesthesiology
Autonomic nervous system
Change detection
Critical Care Medicine
Electrocardiography
Feasibility studies
Health Sciences
Heart rate
Intensive
Life Sciences
Medicine
Medicine & Public Health
Nervous system
Original Research
Phonocardiography
Seismocardiography
Sensors
Statistics for Life Sciences
title Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20multiple%20cardiac%20signal%20acquisition%20technologies%20for%20heart%20rate%20variability%20analysis&rft.jtitle=Journal%20of%20clinical%20monitoring%20and%20computing&rft.au=Charlier,%20P.&rft.date=2020-08-01&rft.volume=34&rft.issue=4&rft.spage=743&rft.epage=752&rft.pages=743-752&rft.issn=1387-1307&rft.eissn=1573-2614&rft_id=info:doi/10.1007/s10877-019-00382-0&rft_dat=%3Cproquest_hal_p%3E2281577176%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-a768674844ff0ece0a219544f8273fd5dffe4a6f3939340fb279e8b26fb96fdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2281577176&rft_id=info:pmid/31463835&rfr_iscdi=true