Loading…
Evidence of T-type structures of hard square boards in capillary confinement
We employ Onsager's second virial density functional theory combined with the Parsons-Lee theory within the restricted orientation (Zwanzig) approximation to examine the phase structure of hard square boards of dimensions (L×D×D) uniaxially confined in narrow slabs. Depending on the wall-to-wal...
Saved in:
Published in: | Physical review. E 2023-05, Vol.107 (5-1), p.054117, Article 054117 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We employ Onsager's second virial density functional theory combined with the Parsons-Lee theory within the restricted orientation (Zwanzig) approximation to examine the phase structure of hard square boards of dimensions (L×D×D) uniaxially confined in narrow slabs. Depending on the wall-to-wall separation (H), we predict a number of distinctly different capillary nematic phases, including a monolayer uniaxial or biaxial planar nematic, homeotropic with a variable number of layers, and a T-type structure. We determine that the favored phase is homotropic, and we observe first-order transitions from the homeotropic structure with n layers to n+1 layers as well as from homeotropic surface anchoring to a monolayer planar or T-type structure involving both planar and homeotropic anchoring at the pore surface. By increasing the packing fraction, we further demonstrate a reentrant homeotropic-planar-homeotropic phase sequence in a particular range (i.e., H/D=1.1 and 0.25≤L/D |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.107.054117 |