Loading…
Thermo-enhanced afterglow emission in Tm3+ doped fluoride nanoparticles for anti-counterfeiting application after X-ray excitation
Multimodal luminescence has emerged as a promising solution in the realm of anti-counterfeiting techniques, which have gained global attention due to their association with information and data security. The conventional approach to achieving multimodal luminescence typically involves combining upco...
Saved in:
Published in: | Ceramics international 2023-10, Vol.49 (19), p.31006-31011 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multimodal luminescence has emerged as a promising solution in the realm of anti-counterfeiting techniques, which have gained global attention due to their association with information and data security. The conventional approach to achieving multimodal luminescence typically involves combining upconversion and downshifting luminescence, which necessitates the use of external excitation sources and costly detection equipment. Herein, we develop an anti-counterfeiting strategy based on the afterglow performance of NaLuF4: Gd, Tm nanoparticles after X-ray excitation. The X-ray-induced Frenkel defects-base traps ensnare electrons with low kinetic energy, resulting in the creation of persistent photon traps that are responsible for the temperature-dependent afterglow intensity. The dual-band and thermo-enhanced afterglow emission can encrypt information well according to our proof-of-concept experiment and the visible light signal can be successfully captured by a smartphone camera. These unique features of NaLuF4: Gd, Tm nanoparticles render them highly appealing for multilevel anti-counterfeiting applications. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2023.07.040 |