Loading…

Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate

We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numeri...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2024-07, Vol.110 (1), Article 014511
Main Authors: Braguta, Victor V., Chernodub, Maxim N., Kudrov, Ilya E., Roenko, Artem A., Sychev, Dmitrii A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013
container_end_page
container_issue 1
container_start_page
container_title Physical review. D
container_volume 110
creator Braguta, Victor V.
Chernodub, Maxim N.
Kudrov, Ilya E.
Roenko, Artem A.
Sychev, Dmitrii A.
description We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures.
doi_str_mv 10.1103/PhysRevD.110.014511
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04257280v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04257280v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIVKVfwMVXpKas48RJj6U8ilQBQnCOXHvdBCVOZZtIPfLnJOrjtDM7M7vSEHLLYMYY8PuPcu8_sXsc2AxYkjJ2QUZxkkEEEM8vz5jBNZl4_wM9FDDPGBuRvzfcylB1SB-ksxgCRWNQhSm1J6FpG7SBtoZWFl2o5ABDiXRb_7aW7mrpGzml0uph6xpZU-zkrnV9vNePZlW6tr8kt_2TSlHVWo3Wy4A35MrI2uPkOMfk-_npa7mK1u8vr8vFOlJM8BChVqnYZGkOWmDC042WQoAyAkweg0pRCQN8k3I1zyFTItaodWpQ54b3CuNjcne4W8q62LmqkW5ftLIqVot1MewgidMszqEbvPzgVa713qE5BxgUQ-nFqfSBFYfS-T8X8nkY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Braguta, Victor V. ; Chernodub, Maxim N. ; Kudrov, Ilya E. ; Roenko, Artem A. ; Sychev, Dmitrii A.</creator><creatorcontrib>Braguta, Victor V. ; Chernodub, Maxim N. ; Kudrov, Ilya E. ; Roenko, Artem A. ; Sychev, Dmitrii A.</creatorcontrib><description>We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.014511</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>High Energy Physics - Phenomenology ; High Energy Physics - Theory ; Physics</subject><ispartof>Physical review. D, 2024-07, Vol.110 (1), Article 014511</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013</cites><orcidid>0009-0003-6429-0633 ; 0000-0002-4993-4731 ; 0000-0002-9700-1338 ; 0000-0003-2101-4914 ; 0000-0001-9098-1460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04257280$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Braguta, Victor V.</creatorcontrib><creatorcontrib>Chernodub, Maxim N.</creatorcontrib><creatorcontrib>Kudrov, Ilya E.</creatorcontrib><creatorcontrib>Roenko, Artem A.</creatorcontrib><creatorcontrib>Sychev, Dmitrii A.</creatorcontrib><title>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</title><title>Physical review. D</title><description>We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures.</description><subject>High Energy Physics - Phenomenology</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIVKVfwMVXpKas48RJj6U8ilQBQnCOXHvdBCVOZZtIPfLnJOrjtDM7M7vSEHLLYMYY8PuPcu8_sXsc2AxYkjJ2QUZxkkEEEM8vz5jBNZl4_wM9FDDPGBuRvzfcylB1SB-ksxgCRWNQhSm1J6FpG7SBtoZWFl2o5ABDiXRb_7aW7mrpGzml0uph6xpZU-zkrnV9vNePZlW6tr8kt_2TSlHVWo3Wy4A35MrI2uPkOMfk-_npa7mK1u8vr8vFOlJM8BChVqnYZGkOWmDC042WQoAyAkweg0pRCQN8k3I1zyFTItaodWpQ54b3CuNjcne4W8q62LmqkW5ftLIqVot1MewgidMszqEbvPzgVa713qE5BxgUQ-nFqfSBFYfS-T8X8nkY</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Braguta, Victor V.</creator><creator>Chernodub, Maxim N.</creator><creator>Kudrov, Ilya E.</creator><creator>Roenko, Artem A.</creator><creator>Sychev, Dmitrii A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0003-6429-0633</orcidid><orcidid>https://orcid.org/0000-0002-4993-4731</orcidid><orcidid>https://orcid.org/0000-0002-9700-1338</orcidid><orcidid>https://orcid.org/0000-0003-2101-4914</orcidid><orcidid>https://orcid.org/0000-0001-9098-1460</orcidid></search><sort><creationdate>20240730</creationdate><title>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</title><author>Braguta, Victor V. ; Chernodub, Maxim N. ; Kudrov, Ilya E. ; Roenko, Artem A. ; Sychev, Dmitrii A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>High Energy Physics - Phenomenology</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braguta, Victor V.</creatorcontrib><creatorcontrib>Chernodub, Maxim N.</creatorcontrib><creatorcontrib>Kudrov, Ilya E.</creatorcontrib><creatorcontrib>Roenko, Artem A.</creatorcontrib><creatorcontrib>Sychev, Dmitrii A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braguta, Victor V.</au><au>Chernodub, Maxim N.</au><au>Kudrov, Ilya E.</au><au>Roenko, Artem A.</au><au>Sychev, Dmitrii A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</atitle><jtitle>Physical review. D</jtitle><date>2024-07-30</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><artnum>014511</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevD.110.014511</doi><orcidid>https://orcid.org/0009-0003-6429-0633</orcidid><orcidid>https://orcid.org/0000-0002-4993-4731</orcidid><orcidid>https://orcid.org/0000-0002-9700-1338</orcidid><orcidid>https://orcid.org/0000-0003-2101-4914</orcidid><orcidid>https://orcid.org/0000-0001-9098-1460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2024-07, Vol.110 (1), Article 014511
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_04257280v1
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects High Energy Physics - Phenomenology
High Energy Physics - Theory
Physics
title Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20Barnett%20effect,%20negative%20moment%20of%20inertia%20of%20the%20gluon%20plasma,%20and%20thermal%20evaporation%20of%20the%20chromomagnetic%20condensate&rft.jtitle=Physical%20review.%20D&rft.au=Braguta,%20Victor%20V.&rft.date=2024-07-30&rft.volume=110&rft.issue=1&rft.artnum=014511&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.014511&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04257280v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true