Loading…
Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate
We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numeri...
Saved in:
Published in: | Physical review. D 2024-07, Vol.110 (1), Article 014511 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Physical review. D |
container_volume | 110 |
creator | Braguta, Victor V. Chernodub, Maxim N. Kudrov, Ilya E. Roenko, Artem A. Sychev, Dmitrii A. |
description | We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures. |
doi_str_mv | 10.1103/PhysRevD.110.014511 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04257280v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04257280v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIVKVfwMVXpKas48RJj6U8ilQBQnCOXHvdBCVOZZtIPfLnJOrjtDM7M7vSEHLLYMYY8PuPcu8_sXsc2AxYkjJ2QUZxkkEEEM8vz5jBNZl4_wM9FDDPGBuRvzfcylB1SB-ksxgCRWNQhSm1J6FpG7SBtoZWFl2o5ABDiXRb_7aW7mrpGzml0uph6xpZU-zkrnV9vNePZlW6tr8kt_2TSlHVWo3Wy4A35MrI2uPkOMfk-_npa7mK1u8vr8vFOlJM8BChVqnYZGkOWmDC042WQoAyAkweg0pRCQN8k3I1zyFTItaodWpQ54b3CuNjcne4W8q62LmqkW5ftLIqVot1MewgidMszqEbvPzgVa713qE5BxgUQ-nFqfSBFYfS-T8X8nkY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Braguta, Victor V. ; Chernodub, Maxim N. ; Kudrov, Ilya E. ; Roenko, Artem A. ; Sychev, Dmitrii A.</creator><creatorcontrib>Braguta, Victor V. ; Chernodub, Maxim N. ; Kudrov, Ilya E. ; Roenko, Artem A. ; Sychev, Dmitrii A.</creatorcontrib><description>We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.110.014511</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>High Energy Physics - Phenomenology ; High Energy Physics - Theory ; Physics</subject><ispartof>Physical review. D, 2024-07, Vol.110 (1), Article 014511</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013</cites><orcidid>0009-0003-6429-0633 ; 0000-0002-4993-4731 ; 0000-0002-9700-1338 ; 0000-0003-2101-4914 ; 0000-0001-9098-1460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04257280$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Braguta, Victor V.</creatorcontrib><creatorcontrib>Chernodub, Maxim N.</creatorcontrib><creatorcontrib>Kudrov, Ilya E.</creatorcontrib><creatorcontrib>Roenko, Artem A.</creatorcontrib><creatorcontrib>Sychev, Dmitrii A.</creatorcontrib><title>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</title><title>Physical review. D</title><description>We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures.</description><subject>High Energy Physics - Phenomenology</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIVKVfwMVXpKas48RJj6U8ilQBQnCOXHvdBCVOZZtIPfLnJOrjtDM7M7vSEHLLYMYY8PuPcu8_sXsc2AxYkjJ2QUZxkkEEEM8vz5jBNZl4_wM9FDDPGBuRvzfcylB1SB-ksxgCRWNQhSm1J6FpG7SBtoZWFl2o5ABDiXRb_7aW7mrpGzml0uph6xpZU-zkrnV9vNePZlW6tr8kt_2TSlHVWo3Wy4A35MrI2uPkOMfk-_npa7mK1u8vr8vFOlJM8BChVqnYZGkOWmDC042WQoAyAkweg0pRCQN8k3I1zyFTItaodWpQ54b3CuNjcne4W8q62LmqkW5ftLIqVot1MewgidMszqEbvPzgVa713qE5BxgUQ-nFqfSBFYfS-T8X8nkY</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Braguta, Victor V.</creator><creator>Chernodub, Maxim N.</creator><creator>Kudrov, Ilya E.</creator><creator>Roenko, Artem A.</creator><creator>Sychev, Dmitrii A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0003-6429-0633</orcidid><orcidid>https://orcid.org/0000-0002-4993-4731</orcidid><orcidid>https://orcid.org/0000-0002-9700-1338</orcidid><orcidid>https://orcid.org/0000-0003-2101-4914</orcidid><orcidid>https://orcid.org/0000-0001-9098-1460</orcidid></search><sort><creationdate>20240730</creationdate><title>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</title><author>Braguta, Victor V. ; Chernodub, Maxim N. ; Kudrov, Ilya E. ; Roenko, Artem A. ; Sychev, Dmitrii A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>High Energy Physics - Phenomenology</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braguta, Victor V.</creatorcontrib><creatorcontrib>Chernodub, Maxim N.</creatorcontrib><creatorcontrib>Kudrov, Ilya E.</creatorcontrib><creatorcontrib>Roenko, Artem A.</creatorcontrib><creatorcontrib>Sychev, Dmitrii A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braguta, Victor V.</au><au>Chernodub, Maxim N.</au><au>Kudrov, Ilya E.</au><au>Roenko, Artem A.</au><au>Sychev, Dmitrii A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate</atitle><jtitle>Physical review. D</jtitle><date>2024-07-30</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><artnum>014511</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We discuss the negativity of the moment of inertia of (quark-)gluon plasma in a window of “supervortical” range of temperatures above the deconfining phase transition, T ≃ ( 1 … 1.5 ) T c , found recently in numerical Monte Carlo simulations by two independent methods. In our work, we confirm numerically that the origin of this effect is rooted in the thermal evaporation of the nonperturbative chromomagnetic condensate. We argue that the negative moment of inertia of gluon plasma indicates the presence of a novel effect, the negative spin-vortical coupling for gluons resulting in a negative gluonic Barnett effect: the spin polarization of gluons exceeds the total angular momentum of rotating plasma, thus forcing the orbital angular momentum to take negative values in the supervortical range of temperatures.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevD.110.014511</doi><orcidid>https://orcid.org/0009-0003-6429-0633</orcidid><orcidid>https://orcid.org/0000-0002-4993-4731</orcidid><orcidid>https://orcid.org/0000-0002-9700-1338</orcidid><orcidid>https://orcid.org/0000-0003-2101-4914</orcidid><orcidid>https://orcid.org/0000-0001-9098-1460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2024-07, Vol.110 (1), Article 014511 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04257280v1 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | High Energy Physics - Phenomenology High Energy Physics - Theory Physics |
title | Negative Barnett effect, negative moment of inertia of the gluon plasma, and thermal evaporation of the chromomagnetic condensate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20Barnett%20effect,%20negative%20moment%20of%20inertia%20of%20the%20gluon%20plasma,%20and%20thermal%20evaporation%20of%20the%20chromomagnetic%20condensate&rft.jtitle=Physical%20review.%20D&rft.au=Braguta,%20Victor%20V.&rft.date=2024-07-30&rft.volume=110&rft.issue=1&rft.artnum=014511&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.110.014511&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04257280v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c163t-edc56b7580d6e435bda660cf60f820c5ec6f03b53c9807c62dedd5fed8f36f013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |