Loading…
Properties of the Biot–Savart Operator Acting on Surface Currents
We investigate properties of the image and kernel of the Biot-Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot-Savart operator is L^2-dense in the space of square-integrable harmonic fields defi...
Saved in:
Published in: | SIAM journal on mathematical analysis 2024-10, Vol.56 (5), p.6446-6482 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1053-b4cc6ffdce8b554924f94bf9d4723570d28ac0196ac53bac417f94c22a5af08e3 |
container_end_page | 6482 |
container_issue | 5 |
container_start_page | 6446 |
container_title | SIAM journal on mathematical analysis |
container_volume | 56 |
creator | Gerner, Wadim |
description | We investigate properties of the image and kernel of the Biot-Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot-Savart operator is L^2-dense in the space of square-integrable harmonic fields defined on a plasma domain surrounded by the CWS. Then we show that harmonic fields which are harmonic in a proper neighbourhood of the underlying plasma domain can in fact be approximated in any C^k-norm by elements of the image of the Biot-Savart operator. In the second part of this work we establish an explicit isomorphism between the space of harmonic Neumann fields and the kernel of the Biot-Savart operator which in particular implies that the dimension of the kernel of the Biot-Savart operator coincides with the genus of the coil winding surface and hence turns out to be a homotopy invariant among regular domains in 3-space. Lastly, we provide an iterative scheme which we show converges weakly in W^{−\frac{1}{2},2}-topology to elements of the kernel of the Biot-Savart operator. |
doi_str_mv | 10.1137/23M1615693 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04271879v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04271879v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1053-b4cc6ffdce8b554924f94bf9d4723570d28ac0196ac53bac417f94c22a5af08e3</originalsourceid><addsrcrecordid>eNpFkM9KAzEYxIMouFYvPkGuCqvflz-bzbEuaoVKhep5yaaJXalNSdKCN9_BN_RJbKnoaWDmN3MYQs4RrhC5umb8ESuUleYHpEDQslQoxSEpAHhVokA4JicpvQFgJTQUpHmKYeVi7l2iwdM8d_SmD_n782tqNiZmOtmmJodIhzb3y1calnS6jt5YR5t1jG6Z0yk58maR3NmvDsjL3e1zMyrHk_uHZjguLYLkZSesrbyfWVd3UgrNhNei83omFONSwYzVxgLqyljJO2MFqi1gGTPSeKgdH5CL_e7cLNpV7N9N_GiD6dvRcNzuPBBMYa30hm3Zyz1rY0gpOv9XQGh3V7X_V_Ef8sdbGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Properties of the Biot–Savart Operator Acting on Surface Currents</title><source>SIAM Journals Archive</source><creator>Gerner, Wadim</creator><creatorcontrib>Gerner, Wadim</creatorcontrib><description>We investigate properties of the image and kernel of the Biot-Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot-Savart operator is L^2-dense in the space of square-integrable harmonic fields defined on a plasma domain surrounded by the CWS. Then we show that harmonic fields which are harmonic in a proper neighbourhood of the underlying plasma domain can in fact be approximated in any C^k-norm by elements of the image of the Biot-Savart operator. In the second part of this work we establish an explicit isomorphism between the space of harmonic Neumann fields and the kernel of the Biot-Savart operator which in particular implies that the dimension of the kernel of the Biot-Savart operator coincides with the genus of the coil winding surface and hence turns out to be a homotopy invariant among regular domains in 3-space. Lastly, we provide an iterative scheme which we show converges weakly in W^{−\frac{1}{2},2}-topology to elements of the kernel of the Biot-Savart operator.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/23M1615693</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Physics</subject><ispartof>SIAM journal on mathematical analysis, 2024-10, Vol.56 (5), p.6446-6482</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1053-b4cc6ffdce8b554924f94bf9d4723570d28ac0196ac53bac417f94c22a5af08e3</cites><orcidid>0000-0002-0483-178X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3185,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04271879$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerner, Wadim</creatorcontrib><title>Properties of the Biot–Savart Operator Acting on Surface Currents</title><title>SIAM journal on mathematical analysis</title><description>We investigate properties of the image and kernel of the Biot-Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot-Savart operator is L^2-dense in the space of square-integrable harmonic fields defined on a plasma domain surrounded by the CWS. Then we show that harmonic fields which are harmonic in a proper neighbourhood of the underlying plasma domain can in fact be approximated in any C^k-norm by elements of the image of the Biot-Savart operator. In the second part of this work we establish an explicit isomorphism between the space of harmonic Neumann fields and the kernel of the Biot-Savart operator which in particular implies that the dimension of the kernel of the Biot-Savart operator coincides with the genus of the coil winding surface and hence turns out to be a homotopy invariant among regular domains in 3-space. Lastly, we provide an iterative scheme which we show converges weakly in W^{−\frac{1}{2},2}-topology to elements of the kernel of the Biot-Savart operator.</description><subject>Mathematics</subject><subject>Physics</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkM9KAzEYxIMouFYvPkGuCqvflz-bzbEuaoVKhep5yaaJXalNSdKCN9_BN_RJbKnoaWDmN3MYQs4RrhC5umb8ESuUleYHpEDQslQoxSEpAHhVokA4JicpvQFgJTQUpHmKYeVi7l2iwdM8d_SmD_n782tqNiZmOtmmJodIhzb3y1calnS6jt5YR5t1jG6Z0yk58maR3NmvDsjL3e1zMyrHk_uHZjguLYLkZSesrbyfWVd3UgrNhNei83omFONSwYzVxgLqyljJO2MFqi1gGTPSeKgdH5CL_e7cLNpV7N9N_GiD6dvRcNzuPBBMYa30hm3Zyz1rY0gpOv9XQGh3V7X_V_Ef8sdbGg</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Gerner, Wadim</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0483-178X</orcidid></search><sort><creationdate>20241031</creationdate><title>Properties of the Biot–Savart Operator Acting on Surface Currents</title><author>Gerner, Wadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1053-b4cc6ffdce8b554924f94bf9d4723570d28ac0196ac53bac417f94c22a5af08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerner, Wadim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerner, Wadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of the Biot–Savart Operator Acting on Surface Currents</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2024-10-31</date><risdate>2024</risdate><volume>56</volume><issue>5</issue><spage>6446</spage><epage>6482</epage><pages>6446-6482</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We investigate properties of the image and kernel of the Biot-Savart operator in the context of stellarator designs for plasma fusion. We first show that for any given coil winding surface (CWS) the image of the Biot-Savart operator is L^2-dense in the space of square-integrable harmonic fields defined on a plasma domain surrounded by the CWS. Then we show that harmonic fields which are harmonic in a proper neighbourhood of the underlying plasma domain can in fact be approximated in any C^k-norm by elements of the image of the Biot-Savart operator. In the second part of this work we establish an explicit isomorphism between the space of harmonic Neumann fields and the kernel of the Biot-Savart operator which in particular implies that the dimension of the kernel of the Biot-Savart operator coincides with the genus of the coil winding surface and hence turns out to be a homotopy invariant among regular domains in 3-space. Lastly, we provide an iterative scheme which we show converges weakly in W^{−\frac{1}{2},2}-topology to elements of the kernel of the Biot-Savart operator.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/23M1615693</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-0483-178X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2024-10, Vol.56 (5), p.6446-6482 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04271879v2 |
source | SIAM Journals Archive |
subjects | Mathematics Physics |
title | Properties of the Biot–Savart Operator Acting on Surface Currents |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20the%20Biot%E2%80%93Savart%20Operator%20Acting%20on%20Surface%20Currents&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Gerner,%20Wadim&rft.date=2024-10-31&rft.volume=56&rft.issue=5&rft.spage=6446&rft.epage=6482&rft.pages=6446-6482&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/23M1615693&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04271879v2%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1053-b4cc6ffdce8b554924f94bf9d4723570d28ac0196ac53bac417f94c22a5af08e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |