Loading…

ε-Isometric Dimension Reduction for Incompressible Subsets of $\ell _p

Fix $p\in [1,\infty )$ p ∈ [ 1 , ∞ ) , $K\in (0,\infty )$ K ∈ ( 0 , ∞ ) , and a probability measure $\mu $ μ . We prove that for every $n\in \mathbb {N}$ n ∈ N , $\varepsilon \in (0,1)$ε ∈ ( 0 , 1 ) , and $x_1,\ldots ,x_n\in L_p(\mu )$ x 1 , … , x n ∈ L p ( μ ) with $\big \Vert \max _{i\in \{1,\ldot...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2023
Main Author: Eskenazis, Alexandros
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Discrete & computational geometry
container_volume
creator Eskenazis, Alexandros
description Fix $p\in [1,\infty )$ p ∈ [ 1 , ∞ ) , $K\in (0,\infty )$ K ∈ ( 0 , ∞ ) , and a probability measure $\mu $ μ . We prove that for every $n\in \mathbb {N}$ n ∈ N , $\varepsilon \in (0,1)$ε ∈ ( 0 , 1 ) , and $x_1,\ldots ,x_n\in L_p(\mu )$ x 1 , … , x n ∈ L p ( μ ) with $\big \Vert \max _{i\in \{1,\ldots ,n\}} |x_i| \big \Vert _{L_p(\mu )} \le K$ ‖ max i ∈ { 1 , … , n } | x i | ‖ L p ( μ ) ≤ K , there exist $d\le \frac{32e^2 (2K)^{2p}\log n}{\varepsilon ^2}$ d ≤ 32 e 2 ( 2 K ) 2 p log n ε 2 and vectors $y_1,\ldots , y_n \in \ell _p^d$ y 1 , … , y n ∈ ℓ p d such that $\begin{aligned} {\forall }\,\,i,j\in \{1,\ldots ,n\}, \quad \Vert x_i-x_j\Vert ^p_{L_p(\mu )}-\varepsilon\le & {} \Vert y_i-y_j\Vert _{\ell _p^d}^p\le \Vert x_i-x_j\Vert ^p_{L_p(\mu )}+\varepsilon . \end{aligned}$ ∀ i , j ∈ { 1 , … , n } , ‖ x i - x j ‖ L p ( μ ) p - ε ≤ ‖ y i - y j ‖ ℓ p d p ≤ ‖ x i - x j ‖ L p ( μ ) p + ε . Moreover, the argument implies the existence of a greedy algorithm which outputs $\{y_i\}_{i=1}^n$ { y i } i = 1 n after receiving $\{x_i\}_{i=1}^n$ { x i } i = 1 n as input. The proof relies on a derandomized version of Maurey’s empirical method (1981) combined with a combinatorial idea of Ball (1990) and a suitable change of measure. Motivated by the above embedding, we introduce the notion of $\varepsilon $ ε -isometric dimension reduction of the unit ball ${\textbf {B}}_E$ of a normed space $(E,\Vert \cdot \Vert _E)$ ( E , ‖ · ‖ E ) and we prove that ${\textbf {B}}_{\ell _p}$ does not admit $\varepsilon $ ε -isometric dimension reduction by linear operators for any value of $p\ne 2$ p ≠ 2 .
doi_str_mv 10.1007/s00454-023-00587-w
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04272890v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04272890v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_04272890v13</originalsourceid><addsrcrecordid>eNqVik2KwjAYQIMoWH8u4CqL2biIfmnTSbsc_AdX6lIItaaYIW1KvuowB5treKZR8AKu3uPxCBlxmHAAOUUAEQsGYcQA4kSynxYJuIhCBkKINgmAy5TFkfzskh7iNzz-FJKArO5_bIOu1I03OZ2bUldoXEV3-nzNm6cVztNNlbuy9hrRnKym--sJdYPUFfTjqK2lqh6QTpFZ1MMX-2S8XBxma3bJrKq9KTP_q1xm1Pprq54NRCjDJIUbj955_wFlNEbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ε-Isometric Dimension Reduction for Incompressible Subsets of $\ell _p</title><source>Springer Nature</source><creator>Eskenazis, Alexandros</creator><creatorcontrib>Eskenazis, Alexandros</creatorcontrib><description>Fix $p\in [1,\infty )$ p ∈ [ 1 , ∞ ) , $K\in (0,\infty )$ K ∈ ( 0 , ∞ ) , and a probability measure $\mu $ μ . We prove that for every $n\in \mathbb {N}$ n ∈ N , $\varepsilon \in (0,1)$ε ∈ ( 0 , 1 ) , and $x_1,\ldots ,x_n\in L_p(\mu )$ x 1 , … , x n ∈ L p ( μ ) with $\big \Vert \max _{i\in \{1,\ldots ,n\}} |x_i| \big \Vert _{L_p(\mu )} \le K$ ‖ max i ∈ { 1 , … , n } | x i | ‖ L p ( μ ) ≤ K , there exist $d\le \frac{32e^2 (2K)^{2p}\log n}{\varepsilon ^2}$ d ≤ 32 e 2 ( 2 K ) 2 p log n ε 2 and vectors $y_1,\ldots , y_n \in \ell _p^d$ y 1 , … , y n ∈ ℓ p d such that $\begin{aligned} {\forall }\,\,i,j\in \{1,\ldots ,n\}, \quad \Vert x_i-x_j\Vert ^p_{L_p(\mu )}-\varepsilon\le &amp; {} \Vert y_i-y_j\Vert _{\ell _p^d}^p\le \Vert x_i-x_j\Vert ^p_{L_p(\mu )}+\varepsilon . \end{aligned}$ ∀ i , j ∈ { 1 , … , n } , ‖ x i - x j ‖ L p ( μ ) p - ε ≤ ‖ y i - y j ‖ ℓ p d p ≤ ‖ x i - x j ‖ L p ( μ ) p + ε . Moreover, the argument implies the existence of a greedy algorithm which outputs $\{y_i\}_{i=1}^n$ { y i } i = 1 n after receiving $\{x_i\}_{i=1}^n$ { x i } i = 1 n as input. The proof relies on a derandomized version of Maurey’s empirical method (1981) combined with a combinatorial idea of Ball (1990) and a suitable change of measure. Motivated by the above embedding, we introduce the notion of $\varepsilon $ ε -isometric dimension reduction of the unit ball ${\textbf {B}}_E$ of a normed space $(E,\Vert \cdot \Vert _E)$ ( E , ‖ · ‖ E ) and we prove that ${\textbf {B}}_{\ell _p}$ does not admit $\varepsilon $ ε -isometric dimension reduction by linear operators for any value of $p\ne 2$ p ≠ 2 .</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-023-00587-w</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Functional Analysis ; Mathematics</subject><ispartof>Discrete &amp; computational geometry, 2023</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1601-8307 ; 0000-0002-1601-8307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04272890$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eskenazis, Alexandros</creatorcontrib><title>ε-Isometric Dimension Reduction for Incompressible Subsets of $\ell _p</title><title>Discrete &amp; computational geometry</title><description>Fix $p\in [1,\infty )$ p ∈ [ 1 , ∞ ) , $K\in (0,\infty )$ K ∈ ( 0 , ∞ ) , and a probability measure $\mu $ μ . We prove that for every $n\in \mathbb {N}$ n ∈ N , $\varepsilon \in (0,1)$ε ∈ ( 0 , 1 ) , and $x_1,\ldots ,x_n\in L_p(\mu )$ x 1 , … , x n ∈ L p ( μ ) with $\big \Vert \max _{i\in \{1,\ldots ,n\}} |x_i| \big \Vert _{L_p(\mu )} \le K$ ‖ max i ∈ { 1 , … , n } | x i | ‖ L p ( μ ) ≤ K , there exist $d\le \frac{32e^2 (2K)^{2p}\log n}{\varepsilon ^2}$ d ≤ 32 e 2 ( 2 K ) 2 p log n ε 2 and vectors $y_1,\ldots , y_n \in \ell _p^d$ y 1 , … , y n ∈ ℓ p d such that $\begin{aligned} {\forall }\,\,i,j\in \{1,\ldots ,n\}, \quad \Vert x_i-x_j\Vert ^p_{L_p(\mu )}-\varepsilon\le &amp; {} \Vert y_i-y_j\Vert _{\ell _p^d}^p\le \Vert x_i-x_j\Vert ^p_{L_p(\mu )}+\varepsilon . \end{aligned}$ ∀ i , j ∈ { 1 , … , n } , ‖ x i - x j ‖ L p ( μ ) p - ε ≤ ‖ y i - y j ‖ ℓ p d p ≤ ‖ x i - x j ‖ L p ( μ ) p + ε . Moreover, the argument implies the existence of a greedy algorithm which outputs $\{y_i\}_{i=1}^n$ { y i } i = 1 n after receiving $\{x_i\}_{i=1}^n$ { x i } i = 1 n as input. The proof relies on a derandomized version of Maurey’s empirical method (1981) combined with a combinatorial idea of Ball (1990) and a suitable change of measure. Motivated by the above embedding, we introduce the notion of $\varepsilon $ ε -isometric dimension reduction of the unit ball ${\textbf {B}}_E$ of a normed space $(E,\Vert \cdot \Vert _E)$ ( E , ‖ · ‖ E ) and we prove that ${\textbf {B}}_{\ell _p}$ does not admit $\varepsilon $ ε -isometric dimension reduction by linear operators for any value of $p\ne 2$ p ≠ 2 .</description><subject>Functional Analysis</subject><subject>Mathematics</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVik2KwjAYQIMoWH8u4CqL2biIfmnTSbsc_AdX6lIItaaYIW1KvuowB5treKZR8AKu3uPxCBlxmHAAOUUAEQsGYcQA4kSynxYJuIhCBkKINgmAy5TFkfzskh7iNzz-FJKArO5_bIOu1I03OZ2bUldoXEV3-nzNm6cVztNNlbuy9hrRnKym--sJdYPUFfTjqK2lqh6QTpFZ1MMX-2S8XBxma3bJrKq9KTP_q1xm1Pprq54NRCjDJIUbj955_wFlNEbg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Eskenazis, Alexandros</creator><general>Springer Verlag</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1601-8307</orcidid><orcidid>https://orcid.org/0000-0002-1601-8307</orcidid></search><sort><creationdate>2023</creationdate><title>ε-Isometric Dimension Reduction for Incompressible Subsets of $\ell _p</title><author>Eskenazis, Alexandros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_04272890v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Functional Analysis</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eskenazis, Alexandros</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eskenazis, Alexandros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ε-Isometric Dimension Reduction for Incompressible Subsets of $\ell _p</atitle><jtitle>Discrete &amp; computational geometry</jtitle><date>2023</date><risdate>2023</risdate><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>Fix $p\in [1,\infty )$ p ∈ [ 1 , ∞ ) , $K\in (0,\infty )$ K ∈ ( 0 , ∞ ) , and a probability measure $\mu $ μ . We prove that for every $n\in \mathbb {N}$ n ∈ N , $\varepsilon \in (0,1)$ε ∈ ( 0 , 1 ) , and $x_1,\ldots ,x_n\in L_p(\mu )$ x 1 , … , x n ∈ L p ( μ ) with $\big \Vert \max _{i\in \{1,\ldots ,n\}} |x_i| \big \Vert _{L_p(\mu )} \le K$ ‖ max i ∈ { 1 , … , n } | x i | ‖ L p ( μ ) ≤ K , there exist $d\le \frac{32e^2 (2K)^{2p}\log n}{\varepsilon ^2}$ d ≤ 32 e 2 ( 2 K ) 2 p log n ε 2 and vectors $y_1,\ldots , y_n \in \ell _p^d$ y 1 , … , y n ∈ ℓ p d such that $\begin{aligned} {\forall }\,\,i,j\in \{1,\ldots ,n\}, \quad \Vert x_i-x_j\Vert ^p_{L_p(\mu )}-\varepsilon\le &amp; {} \Vert y_i-y_j\Vert _{\ell _p^d}^p\le \Vert x_i-x_j\Vert ^p_{L_p(\mu )}+\varepsilon . \end{aligned}$ ∀ i , j ∈ { 1 , … , n } , ‖ x i - x j ‖ L p ( μ ) p - ε ≤ ‖ y i - y j ‖ ℓ p d p ≤ ‖ x i - x j ‖ L p ( μ ) p + ε . Moreover, the argument implies the existence of a greedy algorithm which outputs $\{y_i\}_{i=1}^n$ { y i } i = 1 n after receiving $\{x_i\}_{i=1}^n$ { x i } i = 1 n as input. The proof relies on a derandomized version of Maurey’s empirical method (1981) combined with a combinatorial idea of Ball (1990) and a suitable change of measure. Motivated by the above embedding, we introduce the notion of $\varepsilon $ ε -isometric dimension reduction of the unit ball ${\textbf {B}}_E$ of a normed space $(E,\Vert \cdot \Vert _E)$ ( E , ‖ · ‖ E ) and we prove that ${\textbf {B}}_{\ell _p}$ does not admit $\varepsilon $ ε -isometric dimension reduction by linear operators for any value of $p\ne 2$ p ≠ 2 .</abstract><pub>Springer Verlag</pub><doi>10.1007/s00454-023-00587-w</doi><orcidid>https://orcid.org/0000-0002-1601-8307</orcidid><orcidid>https://orcid.org/0000-0002-1601-8307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2023
issn 0179-5376
1432-0444
language eng
recordid cdi_hal_primary_oai_HAL_hal_04272890v1
source Springer Nature
subjects Functional Analysis
Mathematics
title ε-Isometric Dimension Reduction for Incompressible Subsets of $\ell _p
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B5-Isometric%20Dimension%20Reduction%20for%20Incompressible%20Subsets%20of%20$%5Cell%20_p&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Eskenazis,%20Alexandros&rft.date=2023&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-023-00587-w&rft_dat=%3Chal%3Eoai_HAL_hal_04272890v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_04272890v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true