Loading…
Silicon diffusion in AlN
In this study, we investigate the diffusion of Si donors in AlN. Amorphous S i 1 − x N x sputtered on the surface of bulk AlN with low dislocation density is used as a Si source. The diffusion experiments are conducted through isochronal and isothermal annealing in a protective N2 atmosphere at temp...
Saved in:
Published in: | Journal of applied physics 2023-09, Vol.134 (9) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-cdd1d7c7dd87153efe1bebd03d70d4627ca51c1a907c05bb4ff1d38840725613 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-cdd1d7c7dd87153efe1bebd03d70d4627ca51c1a907c05bb4ff1d38840725613 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 134 |
creator | Bonito Oliva, V. Mangelinck, D. Hagedorn, S. Bracht, H. Irmscher, K. Hartmann, C. Vennéguès, P. Albrecht, M. |
description | In this study, we investigate the diffusion of Si donors in AlN. Amorphous
S
i
1
−
x
N
x sputtered on the surface of bulk AlN with low dislocation density is used as a Si source. The diffusion experiments are conducted through isochronal and isothermal annealing in a protective N2 atmosphere at temperatures between 1500 and 1700 °C. The Si depth profiles measured by secondary ion mass spectrometry exhibit a convex box-like shape with a steep diffusion front. These concentration profiles are best described with a diffusion coefficient that depends on the square of local Si concentration. From the characteristic box-shaped Si profiles, we conclude that diffusion of Si in AlN is mediated by singly negatively charged dopant–vacancy pairs
S
i
Al
V
Al
−. The strong concentration dependence of Si diffusion is due to the electric field associated with the incorporation of Si donors
(
Si
Al
+
1
) on substitutional Al lattice sites and reflects that Si is fully electrically active at diffusion temperature. The experimentally obtained extrinsic Si diffusion coefficient is reduced to intrinsic doping conditions. The temperature dependence of Si diffusion for intrinsic conditions is described by an activation enthalpy of
(
10.34
±
0.32
)
eV and a pre-exponential factor of
235
−
203
+
1485
c
m
2
s
−
1. The migration enthalpy of the donor–vacancy pair
S
i
Al
V
Al
− is estimated to be around 3.5 eV. This estimation is based on the activation enthalpy of the transport capacity of
S
i
Al
V
Al
− and theoretical results concerning the formation energy of negatively charged vacancies on Al-sites in AlN. |
doi_str_mv | 10.1063/5.0159641 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04285030v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861468883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cdd1d7c7dd87153efe1bebd03d70d4627ca51c1a907c05bb4ff1d38840725613</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFcP3jwueFLoOtM0Hz2WZXWFogf3HtKkwSy1XZtW8N_b0kVvnuZleHiYeQm5RlghcPrAVoAs4ymekAhBZrFgDE5JBJBgLDORnZOLEPYAiJJmEbl587U3bbO03rkh-DH5ZpnXL5fkzOk6VFfHuSC7x81uvY2L16fndV7EhnLsY2MtWmGEtVIgo5WrsKxKC9QKsClPhNEMDeoMhAFWlqlzaKmUKYiEcaQLcjdr33WtDp3_0N23arVX27xQ0w7SRDKg8DWxtzN76NrPoQq92rdD14zXqURyTLmUkv4ZTdeG0FXuV4ugpo4UU8eORvZ-ZoPxve7H7_-BfwCHq2Ju</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861468883</pqid></control><display><type>article</type><title>Silicon diffusion in AlN</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bonito Oliva, V. ; Mangelinck, D. ; Hagedorn, S. ; Bracht, H. ; Irmscher, K. ; Hartmann, C. ; Vennéguès, P. ; Albrecht, M.</creator><creatorcontrib>Bonito Oliva, V. ; Mangelinck, D. ; Hagedorn, S. ; Bracht, H. ; Irmscher, K. ; Hartmann, C. ; Vennéguès, P. ; Albrecht, M.</creatorcontrib><description>In this study, we investigate the diffusion of Si donors in AlN. Amorphous
S
i
1
−
x
N
x sputtered on the surface of bulk AlN with low dislocation density is used as a Si source. The diffusion experiments are conducted through isochronal and isothermal annealing in a protective N2 atmosphere at temperatures between 1500 and 1700 °C. The Si depth profiles measured by secondary ion mass spectrometry exhibit a convex box-like shape with a steep diffusion front. These concentration profiles are best described with a diffusion coefficient that depends on the square of local Si concentration. From the characteristic box-shaped Si profiles, we conclude that diffusion of Si in AlN is mediated by singly negatively charged dopant–vacancy pairs
S
i
Al
V
Al
−. The strong concentration dependence of Si diffusion is due to the electric field associated with the incorporation of Si donors
(
Si
Al
+
1
) on substitutional Al lattice sites and reflects that Si is fully electrically active at diffusion temperature. The experimentally obtained extrinsic Si diffusion coefficient is reduced to intrinsic doping conditions. The temperature dependence of Si diffusion for intrinsic conditions is described by an activation enthalpy of
(
10.34
±
0.32
)
eV and a pre-exponential factor of
235
−
203
+
1485
c
m
2
s
−
1. The migration enthalpy of the donor–vacancy pair
S
i
Al
V
Al
− is estimated to be around 3.5 eV. This estimation is based on the activation enthalpy of the transport capacity of
S
i
Al
V
Al
− and theoretical results concerning the formation energy of negatively charged vacancies on Al-sites in AlN.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0159641</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Applied physics ; Bulk density ; Chemical Sciences ; Depth profiling ; Diffusion coefficient ; Dislocation density ; Electric fields ; Enthalpy ; Free energy ; Heat of formation ; Ions ; Isothermal annealing ; Lattice sites ; Physics ; Secondary ion mass spectrometry ; Silicon ; Temperature dependence</subject><ispartof>Journal of applied physics, 2023-09, Vol.134 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-cdd1d7c7dd87153efe1bebd03d70d4627ca51c1a907c05bb4ff1d38840725613</citedby><cites>FETCH-LOGICAL-c361t-cdd1d7c7dd87153efe1bebd03d70d4627ca51c1a907c05bb4ff1d38840725613</cites><orcidid>0000-0003-3700-6687 ; 0000-0002-1033-5416 ; 0000-0002-3429-1948 ; 0000-0001-6252-9426 ; 0000-0003-1835-052X ; 0000-0002-0790-5190 ; 0000-0002-1587-8452 ; 0000-0001-9859-4465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04285030$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonito Oliva, V.</creatorcontrib><creatorcontrib>Mangelinck, D.</creatorcontrib><creatorcontrib>Hagedorn, S.</creatorcontrib><creatorcontrib>Bracht, H.</creatorcontrib><creatorcontrib>Irmscher, K.</creatorcontrib><creatorcontrib>Hartmann, C.</creatorcontrib><creatorcontrib>Vennéguès, P.</creatorcontrib><creatorcontrib>Albrecht, M.</creatorcontrib><title>Silicon diffusion in AlN</title><title>Journal of applied physics</title><description>In this study, we investigate the diffusion of Si donors in AlN. Amorphous
S
i
1
−
x
N
x sputtered on the surface of bulk AlN with low dislocation density is used as a Si source. The diffusion experiments are conducted through isochronal and isothermal annealing in a protective N2 atmosphere at temperatures between 1500 and 1700 °C. The Si depth profiles measured by secondary ion mass spectrometry exhibit a convex box-like shape with a steep diffusion front. These concentration profiles are best described with a diffusion coefficient that depends on the square of local Si concentration. From the characteristic box-shaped Si profiles, we conclude that diffusion of Si in AlN is mediated by singly negatively charged dopant–vacancy pairs
S
i
Al
V
Al
−. The strong concentration dependence of Si diffusion is due to the electric field associated with the incorporation of Si donors
(
Si
Al
+
1
) on substitutional Al lattice sites and reflects that Si is fully electrically active at diffusion temperature. The experimentally obtained extrinsic Si diffusion coefficient is reduced to intrinsic doping conditions. The temperature dependence of Si diffusion for intrinsic conditions is described by an activation enthalpy of
(
10.34
±
0.32
)
eV and a pre-exponential factor of
235
−
203
+
1485
c
m
2
s
−
1. The migration enthalpy of the donor–vacancy pair
S
i
Al
V
Al
− is estimated to be around 3.5 eV. This estimation is based on the activation enthalpy of the transport capacity of
S
i
Al
V
Al
− and theoretical results concerning the formation energy of negatively charged vacancies on Al-sites in AlN.</description><subject>Aluminum</subject><subject>Applied physics</subject><subject>Bulk density</subject><subject>Chemical Sciences</subject><subject>Depth profiling</subject><subject>Diffusion coefficient</subject><subject>Dislocation density</subject><subject>Electric fields</subject><subject>Enthalpy</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Ions</subject><subject>Isothermal annealing</subject><subject>Lattice sites</subject><subject>Physics</subject><subject>Secondary ion mass spectrometry</subject><subject>Silicon</subject><subject>Temperature dependence</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kE1LxDAQhoMoWFcP3jwueFLoOtM0Hz2WZXWFogf3HtKkwSy1XZtW8N_b0kVvnuZleHiYeQm5RlghcPrAVoAs4ymekAhBZrFgDE5JBJBgLDORnZOLEPYAiJJmEbl587U3bbO03rkh-DH5ZpnXL5fkzOk6VFfHuSC7x81uvY2L16fndV7EhnLsY2MtWmGEtVIgo5WrsKxKC9QKsClPhNEMDeoMhAFWlqlzaKmUKYiEcaQLcjdr33WtDp3_0N23arVX27xQ0w7SRDKg8DWxtzN76NrPoQq92rdD14zXqURyTLmUkv4ZTdeG0FXuV4ugpo4UU8eORvZ-ZoPxve7H7_-BfwCHq2Ju</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Bonito Oliva, V.</creator><creator>Mangelinck, D.</creator><creator>Hagedorn, S.</creator><creator>Bracht, H.</creator><creator>Irmscher, K.</creator><creator>Hartmann, C.</creator><creator>Vennéguès, P.</creator><creator>Albrecht, M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3700-6687</orcidid><orcidid>https://orcid.org/0000-0002-1033-5416</orcidid><orcidid>https://orcid.org/0000-0002-3429-1948</orcidid><orcidid>https://orcid.org/0000-0001-6252-9426</orcidid><orcidid>https://orcid.org/0000-0003-1835-052X</orcidid><orcidid>https://orcid.org/0000-0002-0790-5190</orcidid><orcidid>https://orcid.org/0000-0002-1587-8452</orcidid><orcidid>https://orcid.org/0000-0001-9859-4465</orcidid></search><sort><creationdate>20230907</creationdate><title>Silicon diffusion in AlN</title><author>Bonito Oliva, V. ; Mangelinck, D. ; Hagedorn, S. ; Bracht, H. ; Irmscher, K. ; Hartmann, C. ; Vennéguès, P. ; Albrecht, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cdd1d7c7dd87153efe1bebd03d70d4627ca51c1a907c05bb4ff1d38840725613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Applied physics</topic><topic>Bulk density</topic><topic>Chemical Sciences</topic><topic>Depth profiling</topic><topic>Diffusion coefficient</topic><topic>Dislocation density</topic><topic>Electric fields</topic><topic>Enthalpy</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Ions</topic><topic>Isothermal annealing</topic><topic>Lattice sites</topic><topic>Physics</topic><topic>Secondary ion mass spectrometry</topic><topic>Silicon</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonito Oliva, V.</creatorcontrib><creatorcontrib>Mangelinck, D.</creatorcontrib><creatorcontrib>Hagedorn, S.</creatorcontrib><creatorcontrib>Bracht, H.</creatorcontrib><creatorcontrib>Irmscher, K.</creatorcontrib><creatorcontrib>Hartmann, C.</creatorcontrib><creatorcontrib>Vennéguès, P.</creatorcontrib><creatorcontrib>Albrecht, M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonito Oliva, V.</au><au>Mangelinck, D.</au><au>Hagedorn, S.</au><au>Bracht, H.</au><au>Irmscher, K.</au><au>Hartmann, C.</au><au>Vennéguès, P.</au><au>Albrecht, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon diffusion in AlN</atitle><jtitle>Journal of applied physics</jtitle><date>2023-09-07</date><risdate>2023</risdate><volume>134</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this study, we investigate the diffusion of Si donors in AlN. Amorphous
S
i
1
−
x
N
x sputtered on the surface of bulk AlN with low dislocation density is used as a Si source. The diffusion experiments are conducted through isochronal and isothermal annealing in a protective N2 atmosphere at temperatures between 1500 and 1700 °C. The Si depth profiles measured by secondary ion mass spectrometry exhibit a convex box-like shape with a steep diffusion front. These concentration profiles are best described with a diffusion coefficient that depends on the square of local Si concentration. From the characteristic box-shaped Si profiles, we conclude that diffusion of Si in AlN is mediated by singly negatively charged dopant–vacancy pairs
S
i
Al
V
Al
−. The strong concentration dependence of Si diffusion is due to the electric field associated with the incorporation of Si donors
(
Si
Al
+
1
) on substitutional Al lattice sites and reflects that Si is fully electrically active at diffusion temperature. The experimentally obtained extrinsic Si diffusion coefficient is reduced to intrinsic doping conditions. The temperature dependence of Si diffusion for intrinsic conditions is described by an activation enthalpy of
(
10.34
±
0.32
)
eV and a pre-exponential factor of
235
−
203
+
1485
c
m
2
s
−
1. The migration enthalpy of the donor–vacancy pair
S
i
Al
V
Al
− is estimated to be around 3.5 eV. This estimation is based on the activation enthalpy of the transport capacity of
S
i
Al
V
Al
− and theoretical results concerning the formation energy of negatively charged vacancies on Al-sites in AlN.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0159641</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3700-6687</orcidid><orcidid>https://orcid.org/0000-0002-1033-5416</orcidid><orcidid>https://orcid.org/0000-0002-3429-1948</orcidid><orcidid>https://orcid.org/0000-0001-6252-9426</orcidid><orcidid>https://orcid.org/0000-0003-1835-052X</orcidid><orcidid>https://orcid.org/0000-0002-0790-5190</orcidid><orcidid>https://orcid.org/0000-0002-1587-8452</orcidid><orcidid>https://orcid.org/0000-0001-9859-4465</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-09, Vol.134 (9) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04285030v1 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Aluminum Applied physics Bulk density Chemical Sciences Depth profiling Diffusion coefficient Dislocation density Electric fields Enthalpy Free energy Heat of formation Ions Isothermal annealing Lattice sites Physics Secondary ion mass spectrometry Silicon Temperature dependence |
title | Silicon diffusion in AlN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A57%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20diffusion%20in%20AlN&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bonito%20Oliva,%20V.&rft.date=2023-09-07&rft.volume=134&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0159641&rft_dat=%3Cproquest_hal_p%3E2861468883%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-cdd1d7c7dd87153efe1bebd03d70d4627ca51c1a907c05bb4ff1d38840725613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861468883&rft_id=info:pmid/&rfr_iscdi=true |