Loading…
Metal–Organic Frameworks for Water Desalination
Rapid industrialization and ever‐increasing global population culminate in continuous upsurge in freshwater crisis worldwide. The most reliable and promising solution to this crisis is utilizing sea‐water as the freshwater source, and desalination technologies pave the way for efficient production o...
Saved in:
Published in: | Advanced functional materials 2024-10, Vol.34 (43), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rapid industrialization and ever‐increasing global population culminate in continuous upsurge in freshwater crisis worldwide. The most reliable and promising solution to this crisis is utilizing sea‐water as the freshwater source, and desalination technologies pave the way for efficient production of freshwater from sea‐water. In this regard, membrane‐based desalination method comes forth owing to its' efficient separation, operational ease, and low‐energy consumption. Metal–organic frameworks (MOFs), the most explored crystalline porous materials, show tremendous promise as membrane‐materials for desalination owing to their structural diversity, tunability, and porous voids which provide secondary water channels. Given significant advances are made in MOF‐materials for desalination in the past few years, it is crucial to systematically summarize the recent progress and development of this field. In this review, a brief overview of various saline water systems and prerequisites for desalination are first presented. Then, advanced fabrication strategies MOF‐membranes followed by the recent progress in MOF‐materials for various desalination processes such as reverse osmosis and forward osmosis are systematically summarized. Finally, the authors’ perspectives on the unsolved scientific and technical challenges and opportunities for MOF‐integrated membranes toward real‐world implementation are proposed. With further systematic development, MOF‐materials promise to provide an ideal platform for next‐generation desalination technology.
Seawater desalination is gaining interest as the viable solution for global water scarcity. The breakthrough in molecular design achieved by metal–organic frameworks (MOFs) can potentially lead to developing highly efficient desalination materials. This review presents an in‐depth analysis of key contributing factors of MOFs for desalination along with designing and development of MOF materials for diverse desalination applications. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202304790 |