Loading…
Hyaluronic Acid Aerogels Made Via Freeze–Thaw-Induced Gelation
The biodegradability, biocompatibility, and bioactivity of hyaluronic acid (HA), a natural polysaccharide, combined with the low density, high porosity, and high specific surface area of aerogels attract interest for biomedical applications such as wound dressings. In this work, physically cross-lin...
Saved in:
Published in: | Biomacromolecules 2023-10, Vol.24 (10), p.4502-4509 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The biodegradability, biocompatibility, and bioactivity of hyaluronic acid (HA), a natural polysaccharide, combined with the low density, high porosity, and high specific surface area of aerogels attract interest for biomedical applications such as wound dressings. In this work, physically cross-linked HA aerogels were prepared via the freeze–thaw (FT) induced gelation method, solvent exchange, and drying with supercritical CO2. The morphology and properties of HA aerogels (volume shrinkage, density, and specific surface area) were investigated as a function of several process parameters: HA concentration, solution pH, number of FT cycles, and type of nonsolvent used during solvent exchange. We demonstrate that the HA solution pH plays a key role in the aerogel formation, as not all conditions result in materials with high specific surface area. HA aerogels were of low density ( |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.2c01518 |