Loading…
Specific Activation of the Alternative Cardiac Promoter of Cacna1c by the Mineralocorticoid Receptor
RATIONALE:The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation...
Saved in:
Published in: | Circulation research 2018-03, Vol.122 (7), p.e49-e61 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5391-a9cd2c576fd7b2386e768d2ce66f6dcbd4c82f65fc08b951cc7686d22e3eafd83 |
---|---|
cites | cdi_FETCH-LOGICAL-c5391-a9cd2c576fd7b2386e768d2ce66f6dcbd4c82f65fc08b951cc7686d22e3eafd83 |
container_end_page | e61 |
container_issue | 7 |
container_start_page | e49 |
container_title | Circulation research |
container_volume | 122 |
creator | Mesquita, Thassio R Auguste, Gaëlle Falcón, Débora Ruiz-Hurtado, Gema Salazar-Enciso, Rogelio Sabourin, Jessica Lefebvre, Florence Viengchareun, Say Kobeissy, Hussein Lechène, Patrick Nicolas, Valérie Fernandez-Celis, Amaya Gómez, Susana Lauton Santos, Sandra Morel, Eric Rueda, Angelica López-Andrés, Natalia Gómez, Ana Maria Lombès, Marc Benitah, Jean-Pierre |
description | RATIONALE:The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts.
OBJECTIVE:To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner.
METHODS AND RESULTS:In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca channel blocker, nifedipine, in aldosterone-treated vessels.
CONCLUSIONS:Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases. |
doi_str_mv | 10.1161/CIRCRESAHA.117.312451 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04312391v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2019570470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5391-a9cd2c576fd7b2386e768d2ce66f6dcbd4c82f65fc08b951cc7686d22e3eafd83</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqHwE0ArceKwxePP9XG1akmlIFAKZ8vrD8VlEwfvJlX_PU63LTc4WfP6mXc08yL0HvAFgIDP3fW6W1_etMu21PKCAmEcXqAFcMJqxiW8RAuMsaolpfgMvRnHW4yBUaJeozOimJCgxAK5m723MURbtXaKRzPFtKtSqKaNr9ph8nlXpKOvOpNdNLb6ntM2FfnEdMbuDNiqv3_Av8adz2ZINuUp2hRdtfbW76eU36JXwQyjf_f4nqOfV5c_umW9-vblumtXteVUQW2UdcRyKYKTPaGN8FI0RfFCBOFs75htSBA8WNz0ioO15V84Qjz1JriGnqNPs-_GDHqf49bke51M1Mt2pU8aZuVOZdQRCvtxZvc5_T74cdK36VC2HUZNMCguMZO4UHymbE7jmH14tgWsTznovzmUWuo5h9L34dH90G-9e-56OnwB1AzcpdOVx1_D4c5nvfFmmDb_NWf_6C2hY4qB1GWNBpfwcV0UAPoHX46l1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019570470</pqid></control><display><type>article</type><title>Specific Activation of the Alternative Cardiac Promoter of Cacna1c by the Mineralocorticoid Receptor</title><source>Freely Accessible Science Journals</source><creator>Mesquita, Thassio R ; Auguste, Gaëlle ; Falcón, Débora ; Ruiz-Hurtado, Gema ; Salazar-Enciso, Rogelio ; Sabourin, Jessica ; Lefebvre, Florence ; Viengchareun, Say ; Kobeissy, Hussein ; Lechène, Patrick ; Nicolas, Valérie ; Fernandez-Celis, Amaya ; Gómez, Susana ; Lauton Santos, Sandra ; Morel, Eric ; Rueda, Angelica ; López-Andrés, Natalia ; Gómez, Ana Maria ; Lombès, Marc ; Benitah, Jean-Pierre</creator><creatorcontrib>Mesquita, Thassio R ; Auguste, Gaëlle ; Falcón, Débora ; Ruiz-Hurtado, Gema ; Salazar-Enciso, Rogelio ; Sabourin, Jessica ; Lefebvre, Florence ; Viengchareun, Say ; Kobeissy, Hussein ; Lechène, Patrick ; Nicolas, Valérie ; Fernandez-Celis, Amaya ; Gómez, Susana ; Lauton Santos, Sandra ; Morel, Eric ; Rueda, Angelica ; López-Andrés, Natalia ; Gómez, Ana Maria ; Lombès, Marc ; Benitah, Jean-Pierre</creatorcontrib><description>RATIONALE:The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts.
OBJECTIVE:To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner.
METHODS AND RESULTS:In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca channel blocker, nifedipine, in aldosterone-treated vessels.
CONCLUSIONS:Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.117.312451</identifier><identifier>PMID: 29467196</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Aldosterone ; Animal models ; Aorta ; Blood pressure ; Calcium ; Calcium channels (L-type) ; Calcium channels (voltage-gated) ; Cardiovascular diseases ; Deoxyribonucleic acid ; DNA ; Endocrinology and metabolism ; Gene expression ; Heart diseases ; Human health and pathology ; Life Sciences ; Molecular modelling ; Muscle contraction ; Mutagenesis ; Myocytes ; Neonates ; Nifedipine ; Reporter gene ; Rodents ; Smooth muscle ; Transgenic mice ; Ventricle</subject><ispartof>Circulation research, 2018-03, Vol.122 (7), p.e49-e61</ispartof><rights>2018 American Heart Association, Inc.</rights><rights>Copyright Lippincott Williams & Wilkins Ovid Technologies Mar 30, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5391-a9cd2c576fd7b2386e768d2ce66f6dcbd4c82f65fc08b951cc7686d22e3eafd83</citedby><cites>FETCH-LOGICAL-c5391-a9cd2c576fd7b2386e768d2ce66f6dcbd4c82f65fc08b951cc7686d22e3eafd83</cites><orcidid>0000-0003-4280-3250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29467196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://universite-paris-saclay.hal.science/hal-04312391$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mesquita, Thassio R</creatorcontrib><creatorcontrib>Auguste, Gaëlle</creatorcontrib><creatorcontrib>Falcón, Débora</creatorcontrib><creatorcontrib>Ruiz-Hurtado, Gema</creatorcontrib><creatorcontrib>Salazar-Enciso, Rogelio</creatorcontrib><creatorcontrib>Sabourin, Jessica</creatorcontrib><creatorcontrib>Lefebvre, Florence</creatorcontrib><creatorcontrib>Viengchareun, Say</creatorcontrib><creatorcontrib>Kobeissy, Hussein</creatorcontrib><creatorcontrib>Lechène, Patrick</creatorcontrib><creatorcontrib>Nicolas, Valérie</creatorcontrib><creatorcontrib>Fernandez-Celis, Amaya</creatorcontrib><creatorcontrib>Gómez, Susana</creatorcontrib><creatorcontrib>Lauton Santos, Sandra</creatorcontrib><creatorcontrib>Morel, Eric</creatorcontrib><creatorcontrib>Rueda, Angelica</creatorcontrib><creatorcontrib>López-Andrés, Natalia</creatorcontrib><creatorcontrib>Gómez, Ana Maria</creatorcontrib><creatorcontrib>Lombès, Marc</creatorcontrib><creatorcontrib>Benitah, Jean-Pierre</creatorcontrib><title>Specific Activation of the Alternative Cardiac Promoter of Cacna1c by the Mineralocorticoid Receptor</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>RATIONALE:The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts.
OBJECTIVE:To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner.
METHODS AND RESULTS:In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca channel blocker, nifedipine, in aldosterone-treated vessels.
CONCLUSIONS:Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.</description><subject>Aldosterone</subject><subject>Animal models</subject><subject>Aorta</subject><subject>Blood pressure</subject><subject>Calcium</subject><subject>Calcium channels (L-type)</subject><subject>Calcium channels (voltage-gated)</subject><subject>Cardiovascular diseases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Endocrinology and metabolism</subject><subject>Gene expression</subject><subject>Heart diseases</subject><subject>Human health and pathology</subject><subject>Life Sciences</subject><subject>Molecular modelling</subject><subject>Muscle contraction</subject><subject>Mutagenesis</subject><subject>Myocytes</subject><subject>Neonates</subject><subject>Nifedipine</subject><subject>Reporter gene</subject><subject>Rodents</subject><subject>Smooth muscle</subject><subject>Transgenic mice</subject><subject>Ventricle</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqHwE0ArceKwxePP9XG1akmlIFAKZ8vrD8VlEwfvJlX_PU63LTc4WfP6mXc08yL0HvAFgIDP3fW6W1_etMu21PKCAmEcXqAFcMJqxiW8RAuMsaolpfgMvRnHW4yBUaJeozOimJCgxAK5m723MURbtXaKRzPFtKtSqKaNr9ph8nlXpKOvOpNdNLb6ntM2FfnEdMbuDNiqv3_Av8adz2ZINuUp2hRdtfbW76eU36JXwQyjf_f4nqOfV5c_umW9-vblumtXteVUQW2UdcRyKYKTPaGN8FI0RfFCBOFs75htSBA8WNz0ioO15V84Qjz1JriGnqNPs-_GDHqf49bke51M1Mt2pU8aZuVOZdQRCvtxZvc5_T74cdK36VC2HUZNMCguMZO4UHymbE7jmH14tgWsTznovzmUWuo5h9L34dH90G-9e-56OnwB1AzcpdOVx1_D4c5nvfFmmDb_NWf_6C2hY4qB1GWNBpfwcV0UAPoHX46l1A</recordid><startdate>20180330</startdate><enddate>20180330</enddate><creator>Mesquita, Thassio R</creator><creator>Auguste, Gaëlle</creator><creator>Falcón, Débora</creator><creator>Ruiz-Hurtado, Gema</creator><creator>Salazar-Enciso, Rogelio</creator><creator>Sabourin, Jessica</creator><creator>Lefebvre, Florence</creator><creator>Viengchareun, Say</creator><creator>Kobeissy, Hussein</creator><creator>Lechène, Patrick</creator><creator>Nicolas, Valérie</creator><creator>Fernandez-Celis, Amaya</creator><creator>Gómez, Susana</creator><creator>Lauton Santos, Sandra</creator><creator>Morel, Eric</creator><creator>Rueda, Angelica</creator><creator>López-Andrés, Natalia</creator><creator>Gómez, Ana Maria</creator><creator>Lombès, Marc</creator><creator>Benitah, Jean-Pierre</creator><general>American Heart Association, Inc</general><general>Lippincott Williams & Wilkins Ovid Technologies</general><general>American Heart Association</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4280-3250</orcidid></search><sort><creationdate>20180330</creationdate><title>Specific Activation of the Alternative Cardiac Promoter of Cacna1c by the Mineralocorticoid Receptor</title><author>Mesquita, Thassio R ; Auguste, Gaëlle ; Falcón, Débora ; Ruiz-Hurtado, Gema ; Salazar-Enciso, Rogelio ; Sabourin, Jessica ; Lefebvre, Florence ; Viengchareun, Say ; Kobeissy, Hussein ; Lechène, Patrick ; Nicolas, Valérie ; Fernandez-Celis, Amaya ; Gómez, Susana ; Lauton Santos, Sandra ; Morel, Eric ; Rueda, Angelica ; López-Andrés, Natalia ; Gómez, Ana Maria ; Lombès, Marc ; Benitah, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5391-a9cd2c576fd7b2386e768d2ce66f6dcbd4c82f65fc08b951cc7686d22e3eafd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aldosterone</topic><topic>Animal models</topic><topic>Aorta</topic><topic>Blood pressure</topic><topic>Calcium</topic><topic>Calcium channels (L-type)</topic><topic>Calcium channels (voltage-gated)</topic><topic>Cardiovascular diseases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Endocrinology and metabolism</topic><topic>Gene expression</topic><topic>Heart diseases</topic><topic>Human health and pathology</topic><topic>Life Sciences</topic><topic>Molecular modelling</topic><topic>Muscle contraction</topic><topic>Mutagenesis</topic><topic>Myocytes</topic><topic>Neonates</topic><topic>Nifedipine</topic><topic>Reporter gene</topic><topic>Rodents</topic><topic>Smooth muscle</topic><topic>Transgenic mice</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mesquita, Thassio R</creatorcontrib><creatorcontrib>Auguste, Gaëlle</creatorcontrib><creatorcontrib>Falcón, Débora</creatorcontrib><creatorcontrib>Ruiz-Hurtado, Gema</creatorcontrib><creatorcontrib>Salazar-Enciso, Rogelio</creatorcontrib><creatorcontrib>Sabourin, Jessica</creatorcontrib><creatorcontrib>Lefebvre, Florence</creatorcontrib><creatorcontrib>Viengchareun, Say</creatorcontrib><creatorcontrib>Kobeissy, Hussein</creatorcontrib><creatorcontrib>Lechène, Patrick</creatorcontrib><creatorcontrib>Nicolas, Valérie</creatorcontrib><creatorcontrib>Fernandez-Celis, Amaya</creatorcontrib><creatorcontrib>Gómez, Susana</creatorcontrib><creatorcontrib>Lauton Santos, Sandra</creatorcontrib><creatorcontrib>Morel, Eric</creatorcontrib><creatorcontrib>Rueda, Angelica</creatorcontrib><creatorcontrib>López-Andrés, Natalia</creatorcontrib><creatorcontrib>Gómez, Ana Maria</creatorcontrib><creatorcontrib>Lombès, Marc</creatorcontrib><creatorcontrib>Benitah, Jean-Pierre</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mesquita, Thassio R</au><au>Auguste, Gaëlle</au><au>Falcón, Débora</au><au>Ruiz-Hurtado, Gema</au><au>Salazar-Enciso, Rogelio</au><au>Sabourin, Jessica</au><au>Lefebvre, Florence</au><au>Viengchareun, Say</au><au>Kobeissy, Hussein</au><au>Lechène, Patrick</au><au>Nicolas, Valérie</au><au>Fernandez-Celis, Amaya</au><au>Gómez, Susana</au><au>Lauton Santos, Sandra</au><au>Morel, Eric</au><au>Rueda, Angelica</au><au>López-Andrés, Natalia</au><au>Gómez, Ana Maria</au><au>Lombès, Marc</au><au>Benitah, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specific Activation of the Alternative Cardiac Promoter of Cacna1c by the Mineralocorticoid Receptor</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2018-03-30</date><risdate>2018</risdate><volume>122</volume><issue>7</issue><spage>e49</spage><epage>e61</epage><pages>e49-e61</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>RATIONALE:The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts.
OBJECTIVE:To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner.
METHODS AND RESULTS:In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca channel blocker, nifedipine, in aldosterone-treated vessels.
CONCLUSIONS:Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>29467196</pmid><doi>10.1161/CIRCRESAHA.117.312451</doi><orcidid>https://orcid.org/0000-0003-4280-3250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7330 |
ispartof | Circulation research, 2018-03, Vol.122 (7), p.e49-e61 |
issn | 0009-7330 1524-4571 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04312391v1 |
source | Freely Accessible Science Journals |
subjects | Aldosterone Animal models Aorta Blood pressure Calcium Calcium channels (L-type) Calcium channels (voltage-gated) Cardiovascular diseases Deoxyribonucleic acid DNA Endocrinology and metabolism Gene expression Heart diseases Human health and pathology Life Sciences Molecular modelling Muscle contraction Mutagenesis Myocytes Neonates Nifedipine Reporter gene Rodents Smooth muscle Transgenic mice Ventricle |
title | Specific Activation of the Alternative Cardiac Promoter of Cacna1c by the Mineralocorticoid Receptor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specific%20Activation%20of%20the%20Alternative%20Cardiac%20Promoter%20of%20Cacna1c%20by%20the%20Mineralocorticoid%20Receptor&rft.jtitle=Circulation%20research&rft.au=Mesquita,%20Thassio%20R&rft.date=2018-03-30&rft.volume=122&rft.issue=7&rft.spage=e49&rft.epage=e61&rft.pages=e49-e61&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.117.312451&rft_dat=%3Cproquest_hal_p%3E2019570470%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5391-a9cd2c576fd7b2386e768d2ce66f6dcbd4c82f65fc08b951cc7686d22e3eafd83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019570470&rft_id=info:pmid/29467196&rfr_iscdi=true |