Loading…
A Biotinylated Conducting Polypyrrole for the Spatially Controlled Construction of an Amperometric Biosensor
A new biotin derivative functionalized by an electropolymerizable pyrrole group has been synthesized. The electrooxidation of this biotin pyrrole has allowed the formation of biotinylated conducting polypyrrole films in organic electrolyte. Gravimetric measurements based on a quartz crystal microbal...
Saved in:
Published in: | Analytical chemistry (Washington) 1999-09, Vol.71 (17), p.3692-3697 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new biotin derivative functionalized by an electropolymerizable pyrrole group has been synthesized. The electrooxidation of this biotin pyrrole has allowed the formation of biotinylated conducting polypyrrole films in organic electrolyte. Gravimetric measurements based on a quartz crystal microbalance, modified by the biotinylated polymer, revealed an avidin−biotin-specific binding at the interface of polymer−solution. The estimated mass increase corresponded to the anchoring of 1.5 avidin monolayers on the polypyrrole surface. In addition, the subsequent grafting of biotinylated glucose oxidase was corroborated by electrochemical permeation studies. Enzyme multilayers composed of glucose oxidase or polyphenol oxidase were elaborated on the electrode surface modified by the biotinylated polypyrrole film. The amperometric response of the resulting biosensors to glucose or catechol has been studied at +0.6 or −0.2 V vs SCE, respectively. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac9901788 |