Loading…
Stochastic Bounds for the Max Flow in a Network with Discrete Random Capacities
We show how to obtain stochastic bounds for the strong stochastic ordering and the concave ordering of the maximal flow in a network where the capacities are non negative discrete random variables. While the deterministic problem is polynomial, the stochastic version with discrete random variables i...
Saved in:
Published in: | Electronic notes in theoretical computer science 2020-11, Vol.353, p.77-105 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c332t-71e116a84beae4f7d78d253817b74a96bc34fc5232c835f0014cfe23330fad813 |
container_end_page | 105 |
container_issue | |
container_start_page | 77 |
container_title | Electronic notes in theoretical computer science |
container_volume | 353 |
creator | Echabbi, L. Fourneau, J.M. Gacem, O. Lotfi, H. Pekergin, N. |
description | We show how to obtain stochastic bounds for the strong stochastic ordering and the concave ordering of the maximal flow in a network where the capacities are non negative discrete random variables. While the deterministic problem is polynomial, the stochastic version with discrete random variables is NP-hard. The monotonicity of the Min-Cut problem for these stochastic orderings allows us to simplify the input distributions and obtain bounds on the results. Thus we obtain a tradeoff between the complexity of the computations and the precision of the bounds. We illustrate the approach with some examples. |
doi_str_mv | 10.1016/j.entcs.2020.10.014 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04345108v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1571066120300906</els_id><sourcerecordid>oai_HAL_hal_04345108v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-71e116a84beae4f7d78d253817b74a96bc34fc5232c835f0014cfe23330fad813</originalsourceid><addsrcrecordid>eNp9kDlPAzEQhS0EEiHwC2jcUuziaw8KihAIQQpE4qgtxx5rHZI1sk0C_55dghAV1Yye3jfHQ-iUkpwSWp4vc2iTjjkjrFdyQsUeGtCiohkpS7r_pz9ERzEuCeE1rcoBmj8lrxsVk9P4yr-3JmLrA04N4Hv1gScrv8WuxQo_QNr68Iq3LjX42kUdIAF-VK3xazxWb0q75CAeowOrVhFOfuoQvUxunsfTbDa_vRuPZpnmnKWsokBpqWqxAAXCVqaqDSv6mxaVUBflQnNhdcE40zUvLOke0hYY55xYZWrKh-hsN7dRK_kW3FqFT-mVk9PRTPYaEVwUlNSb3st3Xh18jAHsL0CJ7POTS_mdn-zz68VuXUdd7ijo3tg4CDJqB60G4wLoJI13__JfYLB4sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Bounds for the Max Flow in a Network with Discrete Random Capacities</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Echabbi, L. ; Fourneau, J.M. ; Gacem, O. ; Lotfi, H. ; Pekergin, N.</creator><creatorcontrib>Echabbi, L. ; Fourneau, J.M. ; Gacem, O. ; Lotfi, H. ; Pekergin, N.</creatorcontrib><description>We show how to obtain stochastic bounds for the strong stochastic ordering and the concave ordering of the maximal flow in a network where the capacities are non negative discrete random variables. While the deterministic problem is polynomial, the stochastic version with discrete random variables is NP-hard. The monotonicity of the Min-Cut problem for these stochastic orderings allows us to simplify the input distributions and obtain bounds on the results. Thus we obtain a tradeoff between the complexity of the computations and the precision of the bounds. We illustrate the approach with some examples.</description><identifier>ISSN: 1571-0661</identifier><identifier>EISSN: 1571-0661</identifier><identifier>DOI: 10.1016/j.entcs.2020.10.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computer Science ; Increasing convex ordering ; Maximal flow ; Modeling and Simulation ; Random capacity ; Stochastic ordering</subject><ispartof>Electronic notes in theoretical computer science, 2020-11, Vol.353, p.77-105</ispartof><rights>2020 The Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c332t-71e116a84beae4f7d78d253817b74a96bc34fc5232c835f0014cfe23330fad813</cites><orcidid>0000-0003-3386-7658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04345108$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Echabbi, L.</creatorcontrib><creatorcontrib>Fourneau, J.M.</creatorcontrib><creatorcontrib>Gacem, O.</creatorcontrib><creatorcontrib>Lotfi, H.</creatorcontrib><creatorcontrib>Pekergin, N.</creatorcontrib><title>Stochastic Bounds for the Max Flow in a Network with Discrete Random Capacities</title><title>Electronic notes in theoretical computer science</title><description>We show how to obtain stochastic bounds for the strong stochastic ordering and the concave ordering of the maximal flow in a network where the capacities are non negative discrete random variables. While the deterministic problem is polynomial, the stochastic version with discrete random variables is NP-hard. The monotonicity of the Min-Cut problem for these stochastic orderings allows us to simplify the input distributions and obtain bounds on the results. Thus we obtain a tradeoff between the complexity of the computations and the precision of the bounds. We illustrate the approach with some examples.</description><subject>Computer Science</subject><subject>Increasing convex ordering</subject><subject>Maximal flow</subject><subject>Modeling and Simulation</subject><subject>Random capacity</subject><subject>Stochastic ordering</subject><issn>1571-0661</issn><issn>1571-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPAzEQhS0EEiHwC2jcUuziaw8KihAIQQpE4qgtxx5rHZI1sk0C_55dghAV1Yye3jfHQ-iUkpwSWp4vc2iTjjkjrFdyQsUeGtCiohkpS7r_pz9ERzEuCeE1rcoBmj8lrxsVk9P4yr-3JmLrA04N4Hv1gScrv8WuxQo_QNr68Iq3LjX42kUdIAF-VK3xazxWb0q75CAeowOrVhFOfuoQvUxunsfTbDa_vRuPZpnmnKWsokBpqWqxAAXCVqaqDSv6mxaVUBflQnNhdcE40zUvLOke0hYY55xYZWrKh-hsN7dRK_kW3FqFT-mVk9PRTPYaEVwUlNSb3st3Xh18jAHsL0CJ7POTS_mdn-zz68VuXUdd7ijo3tg4CDJqB60G4wLoJI13__JfYLB4sg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Echabbi, L.</creator><creator>Fourneau, J.M.</creator><creator>Gacem, O.</creator><creator>Lotfi, H.</creator><creator>Pekergin, N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3386-7658</orcidid></search><sort><creationdate>20201101</creationdate><title>Stochastic Bounds for the Max Flow in a Network with Discrete Random Capacities</title><author>Echabbi, L. ; Fourneau, J.M. ; Gacem, O. ; Lotfi, H. ; Pekergin, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-71e116a84beae4f7d78d253817b74a96bc34fc5232c835f0014cfe23330fad813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Science</topic><topic>Increasing convex ordering</topic><topic>Maximal flow</topic><topic>Modeling and Simulation</topic><topic>Random capacity</topic><topic>Stochastic ordering</topic><toplevel>online_resources</toplevel><creatorcontrib>Echabbi, L.</creatorcontrib><creatorcontrib>Fourneau, J.M.</creatorcontrib><creatorcontrib>Gacem, O.</creatorcontrib><creatorcontrib>Lotfi, H.</creatorcontrib><creatorcontrib>Pekergin, N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electronic notes in theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Echabbi, L.</au><au>Fourneau, J.M.</au><au>Gacem, O.</au><au>Lotfi, H.</au><au>Pekergin, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Bounds for the Max Flow in a Network with Discrete Random Capacities</atitle><jtitle>Electronic notes in theoretical computer science</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>353</volume><spage>77</spage><epage>105</epage><pages>77-105</pages><issn>1571-0661</issn><eissn>1571-0661</eissn><abstract>We show how to obtain stochastic bounds for the strong stochastic ordering and the concave ordering of the maximal flow in a network where the capacities are non negative discrete random variables. While the deterministic problem is polynomial, the stochastic version with discrete random variables is NP-hard. The monotonicity of the Min-Cut problem for these stochastic orderings allows us to simplify the input distributions and obtain bounds on the results. Thus we obtain a tradeoff between the complexity of the computations and the precision of the bounds. We illustrate the approach with some examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.entcs.2020.10.014</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-3386-7658</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1571-0661 |
ispartof | Electronic notes in theoretical computer science, 2020-11, Vol.353, p.77-105 |
issn | 1571-0661 1571-0661 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04345108v1 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Computer Science Increasing convex ordering Maximal flow Modeling and Simulation Random capacity Stochastic ordering |
title | Stochastic Bounds for the Max Flow in a Network with Discrete Random Capacities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Bounds%20for%20the%20Max%20Flow%20in%20a%20Network%20with%20Discrete%20Random%20Capacities&rft.jtitle=Electronic%20notes%20in%20theoretical%20computer%20science&rft.au=Echabbi,%20L.&rft.date=2020-11-01&rft.volume=353&rft.spage=77&rft.epage=105&rft.pages=77-105&rft.issn=1571-0661&rft.eissn=1571-0661&rft_id=info:doi/10.1016/j.entcs.2020.10.014&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04345108v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-71e116a84beae4f7d78d253817b74a96bc34fc5232c835f0014cfe23330fad813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |