Loading…

Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys

This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of material forming 2024-01, Vol.17 (1), Article 9
Main Authors: Gille, Maryse, Mas, Fanny, Ehrström, Jean-Christophe, Daniel, Dominique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c304t-14190b44d4aeb3c1cc62a414a567427be5b7ddbab7376fc5f64c4c4a3da98e5b3
container_end_page
container_issue 1
container_start_page
container_title International journal of material forming
container_volume 17
creator Gille, Maryse
Mas, Fanny
Ehrström, Jean-Christophe
Daniel, Dominique
description This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It is found that, due to plastic anisotropy, specimens designed for steel are not suited for aluminium alloys. One optimized specimen geometry, ensuring near plane strain state on a large zone all along the deformation range up to failure, is selected. On this geometry, tensile tests instrumented by Digital Image Correlation are performed for five different aluminium alloys (5xxx and 6xxx) in three different directions of the metal sheet (rolling, diagonal and transverse). From Digital Image Correlation analysis, necking limits are evaluated and their relevance for the ranking of alloys according to their formability is discussed in comparison with a standard formability test, namely the Limiting Dome Height test. Graphical Abstract
doi_str_mv 10.1007/s12289-023-01805-9
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04387379v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2916686571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-14190b44d4aeb3c1cc62a414a567427be5b7ddbab7376fc5f64c4c4a3da98e5b3</originalsourceid><addsrcrecordid>eNp9UctOwzAQjBBIIOgPcLLEiUPAr9jJEZVHkSpxgbO1cRzqyomLnVYtX4_boHLDe9jRema0q8mya4LvCMbyPhJKyyrHlOWYlLjIq5PsglQC54ISfnrEWJxnkxiXOD1GpaT8InOPZmOcX3WmH5BvEaCVg96gOASwPRpMH60zqccBDR7pBQTQgwn2Ow0XBrU-dFBbZ4fdXl5st1sEfYPEAbh1Z3u77hJyfhevsrMWXDST336ZfTw_vU9n-fzt5XX6MM81w3zICScVrjlvOJiaaaK1oMAJh0JITmVtilo2TQ21ZFK0umgF16mANVCV6ZNdZrej7wKcWgXbQdgpD1bNHuZqP8OclUlcbUji3ozcVfBf63SmWvp16NN6ilZEiFIUcs-iI0sHH2Mw7dGWYLUPQY0hqBSCOoSgqiRioygmcv9pwp_1P6of77aKdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2916686571</pqid></control><display><type>article</type><title>Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys</title><source>Springer Link</source><creator>Gille, Maryse ; Mas, Fanny ; Ehrström, Jean-Christophe ; Daniel, Dominique</creator><creatorcontrib>Gille, Maryse ; Mas, Fanny ; Ehrström, Jean-Christophe ; Daniel, Dominique</creatorcontrib><description>This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It is found that, due to plastic anisotropy, specimens designed for steel are not suited for aluminium alloys. One optimized specimen geometry, ensuring near plane strain state on a large zone all along the deformation range up to failure, is selected. On this geometry, tensile tests instrumented by Digital Image Correlation are performed for five different aluminium alloys (5xxx and 6xxx) in three different directions of the metal sheet (rolling, diagonal and transverse). From Digital Image Correlation analysis, necking limits are evaluated and their relevance for the ranking of alloys according to their formability is discussed in comparison with a standard formability test, namely the Limiting Dome Height test. Graphical Abstract</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-023-01805-9</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Aluminum base alloys ; CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Control ; Correlation analysis ; Digital imaging ; Dynamical Systems ; Engineering ; Finite element method ; Formability ; Machines ; Manufacturing ; Materials Science ; Mechanical Engineering ; Mechanics ; Mechanics of materials ; Metal sheets ; Necking ; Original Research ; Physics ; Plane strain ; Plastic anisotropy ; Processes ; Prototyping ; Specimen geometry ; Tensile tests ; Vibration ; Weight reduction</subject><ispartof>International journal of material forming, 2024-01, Vol.17 (1), Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-14190b44d4aeb3c1cc62a414a567427be5b7ddbab7376fc5f64c4c4a3da98e5b3</cites><orcidid>0009-0004-0492-8559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04387379$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gille, Maryse</creatorcontrib><creatorcontrib>Mas, Fanny</creatorcontrib><creatorcontrib>Ehrström, Jean-Christophe</creatorcontrib><creatorcontrib>Daniel, Dominique</creatorcontrib><title>Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It is found that, due to plastic anisotropy, specimens designed for steel are not suited for aluminium alloys. One optimized specimen geometry, ensuring near plane strain state on a large zone all along the deformation range up to failure, is selected. On this geometry, tensile tests instrumented by Digital Image Correlation are performed for five different aluminium alloys (5xxx and 6xxx) in three different directions of the metal sheet (rolling, diagonal and transverse). From Digital Image Correlation analysis, necking limits are evaluated and their relevance for the ranking of alloys according to their formability is discussed in comparison with a standard formability test, namely the Limiting Dome Height test. Graphical Abstract</description><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Correlation analysis</subject><subject>Digital imaging</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Formability</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Metal sheets</subject><subject>Necking</subject><subject>Original Research</subject><subject>Physics</subject><subject>Plane strain</subject><subject>Plastic anisotropy</subject><subject>Processes</subject><subject>Prototyping</subject><subject>Specimen geometry</subject><subject>Tensile tests</subject><subject>Vibration</subject><subject>Weight reduction</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UctOwzAQjBBIIOgPcLLEiUPAr9jJEZVHkSpxgbO1cRzqyomLnVYtX4_boHLDe9jRema0q8mya4LvCMbyPhJKyyrHlOWYlLjIq5PsglQC54ISfnrEWJxnkxiXOD1GpaT8InOPZmOcX3WmH5BvEaCVg96gOASwPRpMH60zqccBDR7pBQTQgwn2Ow0XBrU-dFBbZ4fdXl5st1sEfYPEAbh1Z3u77hJyfhevsrMWXDST336ZfTw_vU9n-fzt5XX6MM81w3zICScVrjlvOJiaaaK1oMAJh0JITmVtilo2TQ21ZFK0umgF16mANVCV6ZNdZrej7wKcWgXbQdgpD1bNHuZqP8OclUlcbUji3ozcVfBf63SmWvp16NN6ilZEiFIUcs-iI0sHH2Mw7dGWYLUPQY0hqBSCOoSgqiRioygmcv9pwp_1P6of77aKdg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Gille, Maryse</creator><creator>Mas, Fanny</creator><creator>Ehrström, Jean-Christophe</creator><creator>Daniel, Dominique</creator><general>Springer Paris</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0004-0492-8559</orcidid></search><sort><creationdate>20240101</creationdate><title>Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys</title><author>Gille, Maryse ; Mas, Fanny ; Ehrström, Jean-Christophe ; Daniel, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-14190b44d4aeb3c1cc62a414a567427be5b7ddbab7376fc5f64c4c4a3da98e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Correlation analysis</topic><topic>Digital imaging</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Formability</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Metal sheets</topic><topic>Necking</topic><topic>Original Research</topic><topic>Physics</topic><topic>Plane strain</topic><topic>Plastic anisotropy</topic><topic>Processes</topic><topic>Prototyping</topic><topic>Specimen geometry</topic><topic>Tensile tests</topic><topic>Vibration</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gille, Maryse</creatorcontrib><creatorcontrib>Mas, Fanny</creatorcontrib><creatorcontrib>Ehrström, Jean-Christophe</creatorcontrib><creatorcontrib>Daniel, Dominique</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gille, Maryse</au><au>Mas, Fanny</au><au>Ehrström, Jean-Christophe</au><au>Daniel, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><artnum>9</artnum><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>This article presents the development of a plane strain tensile test aiming at an easy classification of aluminium automotive alloys according to their formability in prototyping steps. A parametric study with finite element method is performed on three different designs inspired by literature. It is found that, due to plastic anisotropy, specimens designed for steel are not suited for aluminium alloys. One optimized specimen geometry, ensuring near plane strain state on a large zone all along the deformation range up to failure, is selected. On this geometry, tensile tests instrumented by Digital Image Correlation are performed for five different aluminium alloys (5xxx and 6xxx) in three different directions of the metal sheet (rolling, diagonal and transverse). From Digital Image Correlation analysis, necking limits are evaluated and their relevance for the ranking of alloys according to their formability is discussed in comparison with a standard formability test, namely the Limiting Dome Height test. Graphical Abstract</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-023-01805-9</doi><orcidid>https://orcid.org/0009-0004-0492-8559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1960-6206
ispartof International journal of material forming, 2024-01, Vol.17 (1), Article 9
issn 1960-6206
1960-6214
language eng
recordid cdi_hal_primary_oai_HAL_hal_04387379v1
source Springer Link
subjects Aluminum base alloys
CAE) and Design
Computational Intelligence
Computer-Aided Engineering (CAD
Control
Correlation analysis
Digital imaging
Dynamical Systems
Engineering
Finite element method
Formability
Machines
Manufacturing
Materials Science
Mechanical Engineering
Mechanics
Mechanics of materials
Metal sheets
Necking
Original Research
Physics
Plane strain
Plastic anisotropy
Processes
Prototyping
Specimen geometry
Tensile tests
Vibration
Weight reduction
title Development of a plane strain tensile test to characterize the formability of 5xxx and 6xxx aluminium alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20plane%20strain%20tensile%20test%20to%20characterize%20the%20formability%20of%205xxx%20and%206xxx%20aluminium%20alloys&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Gille,%20Maryse&rft.date=2024-01-01&rft.volume=17&rft.issue=1&rft.artnum=9&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-023-01805-9&rft_dat=%3Cproquest_hal_p%3E2916686571%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-14190b44d4aeb3c1cc62a414a567427be5b7ddbab7376fc5f64c4c4a3da98e5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2916686571&rft_id=info:pmid/&rfr_iscdi=true