Loading…

Early-Stage end-of-Life prediction of lithium-Ion battery using empirical mode decomposition and particle filter

The predictive maintenance is a major challenge for improving battery safety without compromising performance. Its main objective is to predict the end-of-life (EOL) and assess the associated prediction uncertainty. In this paper, we consider this issue and propose a hybrid method combining empirica...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy Journal of power and energy, 2023-08, Vol.237 (5), p.1090-1099
Main Authors: Meng, Jianwen, Azib, Toufik, Yue, Meiling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-b13771a16d57d246a3b5fe28d0451f93fd7f5266550e8cde0ea1263919279f8c3
cites cdi_FETCH-LOGICAL-c346t-b13771a16d57d246a3b5fe28d0451f93fd7f5266550e8cde0ea1263919279f8c3
container_end_page 1099
container_issue 5
container_start_page 1090
container_title Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy
container_volume 237
creator Meng, Jianwen
Azib, Toufik
Yue, Meiling
description The predictive maintenance is a major challenge for improving battery safety without compromising performance. Its main objective is to predict the end-of-life (EOL) and assess the associated prediction uncertainty. In this paper, we consider this issue and propose a hybrid method combining empirical mode decomposition (EMD) and particle filter (PF) to perform the battery early EOL prediction and its uncertainty assessment. The proposed approach is tested on the two most widely accessible public lithium-ion battery degradation datasets from the Prognostics Center of Excellence at NASA Ames and the Center for Advanced Life Cycle Engineering at the University of Maryland. To avoid the overfitting, a major constraint in the prediction phase, only the residual sequence obtained after EMD decomposition of the raw data is used as the measurement input for PF. Besides, the sum of standard deviation of all intrinsic mode functions (IMFs) is used to determine the noise characteristic for the PF algorithm. Extensive experiments are conducted to show the importance of uncertainty assessment for the early EOL prediction. Although the distance between the true EOL and the mean predicted EOL has no obvious decrease when more operation data is available, the results show a clear decreasing trend of EOL prediction uncertainty when the prediction starts from later operation cycles. Particularly, a strong experimental support is provided for filtering-based prediction methods in the early EOL prediction.
doi_str_mv 10.1177/09576509231153907
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04409715v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09576509231153907</sage_id><sourcerecordid>2831753312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-b13771a16d57d246a3b5fe28d0451f93fd7f5266550e8cde0ea1263919279f8c3</originalsourceid><addsrcrecordid>eNp1kUFLwzAUx4MoOKcfwFvAk4fMvKRpluMY0w0KHtRzyZpky2ibmnTCvr2dEz2IuTyS9_v9eeQhdAt0AiDlA1VC5oIqxgEEV1SeoRGjGRCmcnmORsc-OQKX6CqlHR2OkGyEuoWO9YG89HpjsW0NCY4U3lncRWt81fvQ4uBw7fut3zdkNVzXuu9tPOB98u0G26bz0Ve6xk0wFhtbhaYLyX-ZujW407H3VW2x8_XgXaMLp-tkb77rGL09Ll7nS1I8P63ms4JUPMt7sgYuJWjIjZCGZbnma-EsmxqaCXCKOyOdYHkuBLXTylhqNbCcK1BMKjet-Bjdn3K3ui676BsdD2XQvlzOivL4RrOMKgniAwb27sR2MbzvberLXdjHdhivZFMOUnAObKDgRFUxpBSt-4kFWh6XUP5ZwuBMTk4a_vc39X_hEz8vhjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831753312</pqid></control><display><type>article</type><title>Early-Stage end-of-Life prediction of lithium-Ion battery using empirical mode decomposition and particle filter</title><source>Sage Journals Online</source><source>IMechE Titles Via Sage</source><creator>Meng, Jianwen ; Azib, Toufik ; Yue, Meiling</creator><creatorcontrib>Meng, Jianwen ; Azib, Toufik ; Yue, Meiling</creatorcontrib><description>The predictive maintenance is a major challenge for improving battery safety without compromising performance. Its main objective is to predict the end-of-life (EOL) and assess the associated prediction uncertainty. In this paper, we consider this issue and propose a hybrid method combining empirical mode decomposition (EMD) and particle filter (PF) to perform the battery early EOL prediction and its uncertainty assessment. The proposed approach is tested on the two most widely accessible public lithium-ion battery degradation datasets from the Prognostics Center of Excellence at NASA Ames and the Center for Advanced Life Cycle Engineering at the University of Maryland. To avoid the overfitting, a major constraint in the prediction phase, only the residual sequence obtained after EMD decomposition of the raw data is used as the measurement input for PF. Besides, the sum of standard deviation of all intrinsic mode functions (IMFs) is used to determine the noise characteristic for the PF algorithm. Extensive experiments are conducted to show the importance of uncertainty assessment for the early EOL prediction. Although the distance between the true EOL and the mean predicted EOL has no obvious decrease when more operation data is available, the results show a clear decreasing trend of EOL prediction uncertainty when the prediction starts from later operation cycles. Particularly, a strong experimental support is provided for filtering-based prediction methods in the early EOL prediction.</description><identifier>ISSN: 0957-6509</identifier><identifier>EISSN: 2041-2967</identifier><identifier>DOI: 10.1177/09576509231153907</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; End of life ; Engineering Sciences ; Life cycle engineering ; Life prediction ; Lithium-ion batteries ; Predictive maintenance ; Product safety ; Rechargeable batteries ; Uncertainty</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2023-08, Vol.237 (5), p.1090-1099</ispartof><rights>IMechE 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-b13771a16d57d246a3b5fe28d0451f93fd7f5266550e8cde0ea1263919279f8c3</citedby><cites>FETCH-LOGICAL-c346t-b13771a16d57d246a3b5fe28d0451f93fd7f5266550e8cde0ea1263919279f8c3</cites><orcidid>0000-0001-8083-0650 ; 0000-0002-4624-4743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09576509231153907$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09576509231153907$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,780,784,885,21913,27924,27925,45059,45447,79364</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04409715$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Jianwen</creatorcontrib><creatorcontrib>Azib, Toufik</creatorcontrib><creatorcontrib>Yue, Meiling</creatorcontrib><title>Early-Stage end-of-Life prediction of lithium-Ion battery using empirical mode decomposition and particle filter</title><title>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</title><description>The predictive maintenance is a major challenge for improving battery safety without compromising performance. Its main objective is to predict the end-of-life (EOL) and assess the associated prediction uncertainty. In this paper, we consider this issue and propose a hybrid method combining empirical mode decomposition (EMD) and particle filter (PF) to perform the battery early EOL prediction and its uncertainty assessment. The proposed approach is tested on the two most widely accessible public lithium-ion battery degradation datasets from the Prognostics Center of Excellence at NASA Ames and the Center for Advanced Life Cycle Engineering at the University of Maryland. To avoid the overfitting, a major constraint in the prediction phase, only the residual sequence obtained after EMD decomposition of the raw data is used as the measurement input for PF. Besides, the sum of standard deviation of all intrinsic mode functions (IMFs) is used to determine the noise characteristic for the PF algorithm. Extensive experiments are conducted to show the importance of uncertainty assessment for the early EOL prediction. Although the distance between the true EOL and the mean predicted EOL has no obvious decrease when more operation data is available, the results show a clear decreasing trend of EOL prediction uncertainty when the prediction starts from later operation cycles. Particularly, a strong experimental support is provided for filtering-based prediction methods in the early EOL prediction.</description><subject>Algorithms</subject><subject>End of life</subject><subject>Engineering Sciences</subject><subject>Life cycle engineering</subject><subject>Life prediction</subject><subject>Lithium-ion batteries</subject><subject>Predictive maintenance</subject><subject>Product safety</subject><subject>Rechargeable batteries</subject><subject>Uncertainty</subject><issn>0957-6509</issn><issn>2041-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kUFLwzAUx4MoOKcfwFvAk4fMvKRpluMY0w0KHtRzyZpky2ibmnTCvr2dEz2IuTyS9_v9eeQhdAt0AiDlA1VC5oIqxgEEV1SeoRGjGRCmcnmORsc-OQKX6CqlHR2OkGyEuoWO9YG89HpjsW0NCY4U3lncRWt81fvQ4uBw7fut3zdkNVzXuu9tPOB98u0G26bz0Ve6xk0wFhtbhaYLyX-ZujW407H3VW2x8_XgXaMLp-tkb77rGL09Ll7nS1I8P63ms4JUPMt7sgYuJWjIjZCGZbnma-EsmxqaCXCKOyOdYHkuBLXTylhqNbCcK1BMKjet-Bjdn3K3ui676BsdD2XQvlzOivL4RrOMKgniAwb27sR2MbzvberLXdjHdhivZFMOUnAObKDgRFUxpBSt-4kFWh6XUP5ZwuBMTk4a_vc39X_hEz8vhjA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Meng, Jianwen</creator><creator>Azib, Toufik</creator><creator>Yue, Meiling</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8083-0650</orcidid><orcidid>https://orcid.org/0000-0002-4624-4743</orcidid></search><sort><creationdate>20230801</creationdate><title>Early-Stage end-of-Life prediction of lithium-Ion battery using empirical mode decomposition and particle filter</title><author>Meng, Jianwen ; Azib, Toufik ; Yue, Meiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-b13771a16d57d246a3b5fe28d0451f93fd7f5266550e8cde0ea1263919279f8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>End of life</topic><topic>Engineering Sciences</topic><topic>Life cycle engineering</topic><topic>Life prediction</topic><topic>Lithium-ion batteries</topic><topic>Predictive maintenance</topic><topic>Product safety</topic><topic>Rechargeable batteries</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Jianwen</creatorcontrib><creatorcontrib>Azib, Toufik</creatorcontrib><creatorcontrib>Yue, Meiling</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Jianwen</au><au>Azib, Toufik</au><au>Yue, Meiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early-Stage end-of-Life prediction of lithium-Ion battery using empirical mode decomposition and particle filter</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>237</volume><issue>5</issue><spage>1090</spage><epage>1099</epage><pages>1090-1099</pages><issn>0957-6509</issn><eissn>2041-2967</eissn><abstract>The predictive maintenance is a major challenge for improving battery safety without compromising performance. Its main objective is to predict the end-of-life (EOL) and assess the associated prediction uncertainty. In this paper, we consider this issue and propose a hybrid method combining empirical mode decomposition (EMD) and particle filter (PF) to perform the battery early EOL prediction and its uncertainty assessment. The proposed approach is tested on the two most widely accessible public lithium-ion battery degradation datasets from the Prognostics Center of Excellence at NASA Ames and the Center for Advanced Life Cycle Engineering at the University of Maryland. To avoid the overfitting, a major constraint in the prediction phase, only the residual sequence obtained after EMD decomposition of the raw data is used as the measurement input for PF. Besides, the sum of standard deviation of all intrinsic mode functions (IMFs) is used to determine the noise characteristic for the PF algorithm. Extensive experiments are conducted to show the importance of uncertainty assessment for the early EOL prediction. Although the distance between the true EOL and the mean predicted EOL has no obvious decrease when more operation data is available, the results show a clear decreasing trend of EOL prediction uncertainty when the prediction starts from later operation cycles. Particularly, a strong experimental support is provided for filtering-based prediction methods in the early EOL prediction.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09576509231153907</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8083-0650</orcidid><orcidid>https://orcid.org/0000-0002-4624-4743</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-6509
ispartof Proceedings of the Institution of Mechanical Engineers. Part A, Journal of power and energy, 2023-08, Vol.237 (5), p.1090-1099
issn 0957-6509
2041-2967
language eng
recordid cdi_hal_primary_oai_HAL_hal_04409715v1
source Sage Journals Online; IMechE Titles Via Sage
subjects Algorithms
End of life
Engineering Sciences
Life cycle engineering
Life prediction
Lithium-ion batteries
Predictive maintenance
Product safety
Rechargeable batteries
Uncertainty
title Early-Stage end-of-Life prediction of lithium-Ion battery using empirical mode decomposition and particle filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early-Stage%20end-of-Life%20prediction%20of%20lithium-Ion%20battery%20using%20empirical%20mode%20decomposition%20and%20particle%20filter&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20A,%20Journal%20of%20power%20and%20energy&rft.au=Meng,%20Jianwen&rft.date=2023-08-01&rft.volume=237&rft.issue=5&rft.spage=1090&rft.epage=1099&rft.pages=1090-1099&rft.issn=0957-6509&rft.eissn=2041-2967&rft_id=info:doi/10.1177/09576509231153907&rft_dat=%3Cproquest_hal_p%3E2831753312%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-b13771a16d57d246a3b5fe28d0451f93fd7f5266550e8cde0ea1263919279f8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2831753312&rft_id=info:pmid/&rft_sage_id=10.1177_09576509231153907&rfr_iscdi=true