Loading…

Theoretical treatment of IO-X (X = N 2 , CO, CO 2 , H 2 O) complexes

Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospheri...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2022-03, Vol.24 (12), p.7203-7213
Main Authors: Marzouk, S, Ajili, Y, Ben El Hadj Rhouma, M, Ben Said, R, Hochlaf, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c308t-d36b3a133031c6a15d6b6e8940cf0af57ca2ff9486e40ce4464e8be981849f463
container_end_page 7213
container_issue 12
container_start_page 7203
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Marzouk, S
Ajili, Y
Ben El Hadj Rhouma, M
Ben Said, R
Hochlaf, M
description Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospherically relevant complexes of IO with N , CO, CO and H O, where their structural and spectroscopic properties and their interaction energies are computed. Calculations are carried out by means of post Hartree-Fock (RCCSD(T) and RMP2) methods and density functional theory DFT (PBE0 and M05-2X) based approaches with and without the inclusion of dispersion correction. After comparison to RCCSD(T), we highlight the good performance of M05-2X(+D3) DFT in describing the bonding between IO and X (X = N , CO, CO , H O). Moreover, we found that the IO-X (X = N , CO, CO , H O) complexes are formed by non-covalent interactions between the two monomers. In sum, we characterized two types of complexes: I-bonded and O-bonded, where the former is more stable. The atmospheric implications of the present findings are also discussed such as in the formation of the iodine oxide particles (IOPs).
doi_str_mv 10.1039/d1cp05536d
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04415083v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2638017082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-d36b3a133031c6a15d6b6e8940cf0af57ca2ff9486e40ce4464e8be981849f463</originalsourceid><addsrcrecordid>eNpd0c1LwzAUAPAgipvTi3-ABLxsYjVpPpYePIxO3WBYDxN2K2n6yjradTat6H9v9uEOHpI8Hj8e7-UhdE3JAyUseEyp2RAhmExPUJdyybyAKH56jIeygy6sXRFCqKDsHHWY8KUMmOii8XwJVQ1NbnSBmxp0U8K6wVWGp5G3wP0FfsJv2Mf3OIy2ZxdO3B0NsKnKTQHfYC_RWaYLC1eHt4c-Xp7n4cSbRa_TcDTzDCOq8VImE6YpY4RRIzUVqUwkqIATkxGdiaHRfpYFXElwKeBcclAJBIoqHmRulh4a7OsudRFv6rzU9U9c6TyejGbxNkc4p4Io9kWd7e_tpq4-W7BNXObWQFHoNVStjX3JFKFDonxHb__RVdXWazeJU5wqFigpnLrbK1NX1taQHTugJN7uIR7T8H23h7HDN4eSbVJCeqR_H89-AUTAesY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641839865</pqid></control><display><type>article</type><title>Theoretical treatment of IO-X (X = N 2 , CO, CO 2 , H 2 O) complexes</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Marzouk, S ; Ajili, Y ; Ben El Hadj Rhouma, M ; Ben Said, R ; Hochlaf, M</creator><creatorcontrib>Marzouk, S ; Ajili, Y ; Ben El Hadj Rhouma, M ; Ben Said, R ; Hochlaf, M</creatorcontrib><description>Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospherically relevant complexes of IO with N , CO, CO and H O, where their structural and spectroscopic properties and their interaction energies are computed. Calculations are carried out by means of post Hartree-Fock (RCCSD(T) and RMP2) methods and density functional theory DFT (PBE0 and M05-2X) based approaches with and without the inclusion of dispersion correction. After comparison to RCCSD(T), we highlight the good performance of M05-2X(+D3) DFT in describing the bonding between IO and X (X = N , CO, CO , H O). Moreover, we found that the IO-X (X = N , CO, CO , H O) complexes are formed by non-covalent interactions between the two monomers. In sum, we characterized two types of complexes: I-bonded and O-bonded, where the former is more stable. The atmospheric implications of the present findings are also discussed such as in the formation of the iodine oxide particles (IOPs).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp05536d</identifier><identifier>PMID: 35266935</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Carbon dioxide ; Chemical reactions ; Chemical Sciences ; Density functional theory ; Iodine ; Troposphere</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-03, Vol.24 (12), p.7203-7213</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-d36b3a133031c6a15d6b6e8940cf0af57ca2ff9486e40ce4464e8be981849f463</cites><orcidid>0000-0002-4737-7978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35266935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04415083$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marzouk, S</creatorcontrib><creatorcontrib>Ajili, Y</creatorcontrib><creatorcontrib>Ben El Hadj Rhouma, M</creatorcontrib><creatorcontrib>Ben Said, R</creatorcontrib><creatorcontrib>Hochlaf, M</creatorcontrib><title>Theoretical treatment of IO-X (X = N 2 , CO, CO 2 , H 2 O) complexes</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospherically relevant complexes of IO with N , CO, CO and H O, where their structural and spectroscopic properties and their interaction energies are computed. Calculations are carried out by means of post Hartree-Fock (RCCSD(T) and RMP2) methods and density functional theory DFT (PBE0 and M05-2X) based approaches with and without the inclusion of dispersion correction. After comparison to RCCSD(T), we highlight the good performance of M05-2X(+D3) DFT in describing the bonding between IO and X (X = N , CO, CO , H O). Moreover, we found that the IO-X (X = N , CO, CO , H O) complexes are formed by non-covalent interactions between the two monomers. In sum, we characterized two types of complexes: I-bonded and O-bonded, where the former is more stable. The atmospheric implications of the present findings are also discussed such as in the formation of the iodine oxide particles (IOPs).</description><subject>Carbon dioxide</subject><subject>Chemical reactions</subject><subject>Chemical Sciences</subject><subject>Density functional theory</subject><subject>Iodine</subject><subject>Troposphere</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAUAPAgipvTi3-ABLxsYjVpPpYePIxO3WBYDxN2K2n6yjradTat6H9v9uEOHpI8Hj8e7-UhdE3JAyUseEyp2RAhmExPUJdyybyAKH56jIeygy6sXRFCqKDsHHWY8KUMmOii8XwJVQ1NbnSBmxp0U8K6wVWGp5G3wP0FfsJv2Mf3OIy2ZxdO3B0NsKnKTQHfYC_RWaYLC1eHt4c-Xp7n4cSbRa_TcDTzDCOq8VImE6YpY4RRIzUVqUwkqIATkxGdiaHRfpYFXElwKeBcclAJBIoqHmRulh4a7OsudRFv6rzU9U9c6TyejGbxNkc4p4Io9kWd7e_tpq4-W7BNXObWQFHoNVStjX3JFKFDonxHb__RVdXWazeJU5wqFigpnLrbK1NX1taQHTugJN7uIR7T8H23h7HDN4eSbVJCeqR_H89-AUTAesY</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Marzouk, S</creator><creator>Ajili, Y</creator><creator>Ben El Hadj Rhouma, M</creator><creator>Ben Said, R</creator><creator>Hochlaf, M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid></search><sort><creationdate>20220323</creationdate><title>Theoretical treatment of IO-X (X = N 2 , CO, CO 2 , H 2 O) complexes</title><author>Marzouk, S ; Ajili, Y ; Ben El Hadj Rhouma, M ; Ben Said, R ; Hochlaf, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-d36b3a133031c6a15d6b6e8940cf0af57ca2ff9486e40ce4464e8be981849f463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Chemical reactions</topic><topic>Chemical Sciences</topic><topic>Density functional theory</topic><topic>Iodine</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzouk, S</creatorcontrib><creatorcontrib>Ajili, Y</creatorcontrib><creatorcontrib>Ben El Hadj Rhouma, M</creatorcontrib><creatorcontrib>Ben Said, R</creatorcontrib><creatorcontrib>Hochlaf, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzouk, S</au><au>Ajili, Y</au><au>Ben El Hadj Rhouma, M</au><au>Ben Said, R</au><au>Hochlaf, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical treatment of IO-X (X = N 2 , CO, CO 2 , H 2 O) complexes</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-03-23</date><risdate>2022</risdate><volume>24</volume><issue>12</issue><spage>7203</spage><epage>7213</epage><pages>7203-7213</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Iodine monoxide (IO) is an important component of the biogeochemical cycle of iodine. For instance, it is present in the troposphere, where it plays a crucial role in the physical chemical processes involving iodine containing compounds. Here, we present a theoretical study on a series of atmospherically relevant complexes of IO with N , CO, CO and H O, where their structural and spectroscopic properties and their interaction energies are computed. Calculations are carried out by means of post Hartree-Fock (RCCSD(T) and RMP2) methods and density functional theory DFT (PBE0 and M05-2X) based approaches with and without the inclusion of dispersion correction. After comparison to RCCSD(T), we highlight the good performance of M05-2X(+D3) DFT in describing the bonding between IO and X (X = N , CO, CO , H O). Moreover, we found that the IO-X (X = N , CO, CO , H O) complexes are formed by non-covalent interactions between the two monomers. In sum, we characterized two types of complexes: I-bonded and O-bonded, where the former is more stable. The atmospheric implications of the present findings are also discussed such as in the formation of the iodine oxide particles (IOPs).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35266935</pmid><doi>10.1039/d1cp05536d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4737-7978</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-03, Vol.24 (12), p.7203-7213
issn 1463-9076
1463-9084
language eng
recordid cdi_hal_primary_oai_HAL_hal_04415083v1
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Carbon dioxide
Chemical reactions
Chemical Sciences
Density functional theory
Iodine
Troposphere
title Theoretical treatment of IO-X (X = N 2 , CO, CO 2 , H 2 O) complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20treatment%20of%20IO-X%20(X%20=%20N%202%20,%20CO,%20CO%202%20,%20H%202%20O)%20complexes&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Marzouk,%20S&rft.date=2022-03-23&rft.volume=24&rft.issue=12&rft.spage=7203&rft.epage=7213&rft.pages=7203-7213&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp05536d&rft_dat=%3Cproquest_hal_p%3E2638017082%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c308t-d36b3a133031c6a15d6b6e8940cf0af57ca2ff9486e40ce4464e8be981849f463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2641839865&rft_id=info:pmid/35266935&rfr_iscdi=true