Loading…

Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials

Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2024-01, Vol.36 (2), p.892-900
Main Authors: Mpanga, Eunice Mumba, Wernert, Romain, Fauth, François, Suard, Emmanuelle, Avdeev, Maxim, Fraisse, Bernard, Camacho, Paula Sanz, Carlier, Dany, Lebedev, Oleg, Cassidy, Simon J., Rousse, Gwenaëlle, Berthelot, Romain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3
container_end_page 900
container_issue 2
container_start_page 892
container_title Chemistry of materials
container_volume 36
creator Mpanga, Eunice Mumba
Wernert, Romain
Fauth, François
Suard, Emmanuelle
Avdeev, Maxim
Fraisse, Bernard
Camacho, Paula Sanz
Carlier, Dany
Lebedev, Oleg
Cassidy, Simon J.
Rousse, Gwenaëlle
Berthelot, Romain
description Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions.
doi_str_mv 10.1021/acs.chemmater.3c02749
format article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04422421v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b956569159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYj-BJNePSz2cz-OhKiQrBKDnpuh20pxoaZdRf693UC4eprMzPu8k3kRuqVkRAmj96DjSK_MZgOdCSOuCStEdYYGVDKSSULYORqQsioyUcj8El3FuCaEJrQcoNeFb12TLbrE4kkycbELe7xYfVvbuu0H9haP209oHZ75bcSd30Fo8IvZ4Rr2JpgGz39dY_Bzf9xBG6_RhU3F3BzrEL0_PrxNplk9f5pNxnUGrCi6jHIiJbNVVUlBcyC50JDLnGthgdGS2zI1S2MkaFOxnEMOkoslZ6aRQsCSD9HdwXcFrfoKbgNhrzw4NR3Xqp8RIRgTjP7QpJUHrQ4-xmDsCaBE9RmqlKE6ZaiOGSaOHrh-vfbfYZs--of5A7DDeIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Mpanga, Eunice Mumba ; Wernert, Romain ; Fauth, François ; Suard, Emmanuelle ; Avdeev, Maxim ; Fraisse, Bernard ; Camacho, Paula Sanz ; Carlier, Dany ; Lebedev, Oleg ; Cassidy, Simon J. ; Rousse, Gwenaëlle ; Berthelot, Romain</creator><creatorcontrib>Mpanga, Eunice Mumba ; Wernert, Romain ; Fauth, François ; Suard, Emmanuelle ; Avdeev, Maxim ; Fraisse, Bernard ; Camacho, Paula Sanz ; Carlier, Dany ; Lebedev, Oleg ; Cassidy, Simon J. ; Rousse, Gwenaëlle ; Berthelot, Romain</creatorcontrib><description>Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02749</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>Chemistry of materials, 2024-01, Vol.36 (2), p.892-900</ispartof><rights>2024 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3</cites><orcidid>0000-0003-1534-2663 ; 0000-0002-5086-4363 ; 0000-0002-4297-1425 ; 0000-0002-5073-4008 ; 0000-0001-5966-5929 ; 0000-0001-8877-0015 ; 0000-0001-9465-3106 ; 0000-0002-4006-5488 ; 0000-0003-4898-8225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04422421$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mpanga, Eunice Mumba</creatorcontrib><creatorcontrib>Wernert, Romain</creatorcontrib><creatorcontrib>Fauth, François</creatorcontrib><creatorcontrib>Suard, Emmanuelle</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Fraisse, Bernard</creatorcontrib><creatorcontrib>Camacho, Paula Sanz</creatorcontrib><creatorcontrib>Carlier, Dany</creatorcontrib><creatorcontrib>Lebedev, Oleg</creatorcontrib><creatorcontrib>Cassidy, Simon J.</creatorcontrib><creatorcontrib>Rousse, Gwenaëlle</creatorcontrib><creatorcontrib>Berthelot, Romain</creatorcontrib><title>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions.</description><subject>Chemical Sciences</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYj-BJNePSz2cz-OhKiQrBKDnpuh20pxoaZdRf693UC4eprMzPu8k3kRuqVkRAmj96DjSK_MZgOdCSOuCStEdYYGVDKSSULYORqQsioyUcj8El3FuCaEJrQcoNeFb12TLbrE4kkycbELe7xYfVvbuu0H9haP209oHZ75bcSd30Fo8IvZ4Rr2JpgGz39dY_Bzf9xBG6_RhU3F3BzrEL0_PrxNplk9f5pNxnUGrCi6jHIiJbNVVUlBcyC50JDLnGthgdGS2zI1S2MkaFOxnEMOkoslZ6aRQsCSD9HdwXcFrfoKbgNhrzw4NR3Xqp8RIRgTjP7QpJUHrQ4-xmDsCaBE9RmqlKE6ZaiOGSaOHrh-vfbfYZs--of5A7DDeIU</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Mpanga, Eunice Mumba</creator><creator>Wernert, Romain</creator><creator>Fauth, François</creator><creator>Suard, Emmanuelle</creator><creator>Avdeev, Maxim</creator><creator>Fraisse, Bernard</creator><creator>Camacho, Paula Sanz</creator><creator>Carlier, Dany</creator><creator>Lebedev, Oleg</creator><creator>Cassidy, Simon J.</creator><creator>Rousse, Gwenaëlle</creator><creator>Berthelot, Romain</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1534-2663</orcidid><orcidid>https://orcid.org/0000-0002-5086-4363</orcidid><orcidid>https://orcid.org/0000-0002-4297-1425</orcidid><orcidid>https://orcid.org/0000-0002-5073-4008</orcidid><orcidid>https://orcid.org/0000-0001-5966-5929</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0001-9465-3106</orcidid><orcidid>https://orcid.org/0000-0002-4006-5488</orcidid><orcidid>https://orcid.org/0000-0003-4898-8225</orcidid></search><sort><creationdate>20240123</creationdate><title>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</title><author>Mpanga, Eunice Mumba ; Wernert, Romain ; Fauth, François ; Suard, Emmanuelle ; Avdeev, Maxim ; Fraisse, Bernard ; Camacho, Paula Sanz ; Carlier, Dany ; Lebedev, Oleg ; Cassidy, Simon J. ; Rousse, Gwenaëlle ; Berthelot, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mpanga, Eunice Mumba</creatorcontrib><creatorcontrib>Wernert, Romain</creatorcontrib><creatorcontrib>Fauth, François</creatorcontrib><creatorcontrib>Suard, Emmanuelle</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Fraisse, Bernard</creatorcontrib><creatorcontrib>Camacho, Paula Sanz</creatorcontrib><creatorcontrib>Carlier, Dany</creatorcontrib><creatorcontrib>Lebedev, Oleg</creatorcontrib><creatorcontrib>Cassidy, Simon J.</creatorcontrib><creatorcontrib>Rousse, Gwenaëlle</creatorcontrib><creatorcontrib>Berthelot, Romain</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mpanga, Eunice Mumba</au><au>Wernert, Romain</au><au>Fauth, François</au><au>Suard, Emmanuelle</au><au>Avdeev, Maxim</au><au>Fraisse, Bernard</au><au>Camacho, Paula Sanz</au><au>Carlier, Dany</au><au>Lebedev, Oleg</au><au>Cassidy, Simon J.</au><au>Rousse, Gwenaëlle</au><au>Berthelot, Romain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-01-23</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>892</spage><epage>900</epage><pages>892-900</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.3c02749</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1534-2663</orcidid><orcidid>https://orcid.org/0000-0002-5086-4363</orcidid><orcidid>https://orcid.org/0000-0002-4297-1425</orcidid><orcidid>https://orcid.org/0000-0002-5073-4008</orcidid><orcidid>https://orcid.org/0000-0001-5966-5929</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0001-9465-3106</orcidid><orcidid>https://orcid.org/0000-0002-4006-5488</orcidid><orcidid>https://orcid.org/0000-0003-4898-8225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-01, Vol.36 (2), p.892-900
issn 0897-4756
1520-5002
language eng
recordid cdi_hal_primary_oai_HAL_hal_04422421v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemical Sciences
title Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Chemistry%20Shuffling%20of%20Alkali%20Ions%20toward%20New%20Layered%20Oxide%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Mpanga,%20Eunice%20Mumba&rft.date=2024-01-23&rft.volume=36&rft.issue=2&rft.spage=892&rft.epage=900&rft.pages=892-900&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02749&rft_dat=%3Cacs_hal_p%3Eb956569159%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true