Loading…
Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials
Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct...
Saved in:
Published in: | Chemistry of materials 2024-01, Vol.36 (2), p.892-900 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3 |
container_end_page | 900 |
container_issue | 2 |
container_start_page | 892 |
container_title | Chemistry of materials |
container_volume | 36 |
creator | Mpanga, Eunice Mumba Wernert, Romain Fauth, François Suard, Emmanuelle Avdeev, Maxim Fraisse, Bernard Camacho, Paula Sanz Carlier, Dany Lebedev, Oleg Cassidy, Simon J. Rousse, Gwenaëlle Berthelot, Romain |
description | Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions. |
doi_str_mv | 10.1021/acs.chemmater.3c02749 |
format | article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04422421v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b956569159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYj-BJNePSz2cz-OhKiQrBKDnpuh20pxoaZdRf693UC4eprMzPu8k3kRuqVkRAmj96DjSK_MZgOdCSOuCStEdYYGVDKSSULYORqQsioyUcj8El3FuCaEJrQcoNeFb12TLbrE4kkycbELe7xYfVvbuu0H9haP209oHZ75bcSd30Fo8IvZ4Rr2JpgGz39dY_Bzf9xBG6_RhU3F3BzrEL0_PrxNplk9f5pNxnUGrCi6jHIiJbNVVUlBcyC50JDLnGthgdGS2zI1S2MkaFOxnEMOkoslZ6aRQsCSD9HdwXcFrfoKbgNhrzw4NR3Xqp8RIRgTjP7QpJUHrQ4-xmDsCaBE9RmqlKE6ZaiOGSaOHrh-vfbfYZs--of5A7DDeIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Mpanga, Eunice Mumba ; Wernert, Romain ; Fauth, François ; Suard, Emmanuelle ; Avdeev, Maxim ; Fraisse, Bernard ; Camacho, Paula Sanz ; Carlier, Dany ; Lebedev, Oleg ; Cassidy, Simon J. ; Rousse, Gwenaëlle ; Berthelot, Romain</creator><creatorcontrib>Mpanga, Eunice Mumba ; Wernert, Romain ; Fauth, François ; Suard, Emmanuelle ; Avdeev, Maxim ; Fraisse, Bernard ; Camacho, Paula Sanz ; Carlier, Dany ; Lebedev, Oleg ; Cassidy, Simon J. ; Rousse, Gwenaëlle ; Berthelot, Romain</creatorcontrib><description>Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02749</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences</subject><ispartof>Chemistry of materials, 2024-01, Vol.36 (2), p.892-900</ispartof><rights>2024 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3</cites><orcidid>0000-0003-1534-2663 ; 0000-0002-5086-4363 ; 0000-0002-4297-1425 ; 0000-0002-5073-4008 ; 0000-0001-5966-5929 ; 0000-0001-8877-0015 ; 0000-0001-9465-3106 ; 0000-0002-4006-5488 ; 0000-0003-4898-8225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04422421$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mpanga, Eunice Mumba</creatorcontrib><creatorcontrib>Wernert, Romain</creatorcontrib><creatorcontrib>Fauth, François</creatorcontrib><creatorcontrib>Suard, Emmanuelle</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Fraisse, Bernard</creatorcontrib><creatorcontrib>Camacho, Paula Sanz</creatorcontrib><creatorcontrib>Carlier, Dany</creatorcontrib><creatorcontrib>Lebedev, Oleg</creatorcontrib><creatorcontrib>Cassidy, Simon J.</creatorcontrib><creatorcontrib>Rousse, Gwenaëlle</creatorcontrib><creatorcontrib>Berthelot, Romain</creatorcontrib><title>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions.</description><subject>Chemical Sciences</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYj-BJNePSz2cz-OhKiQrBKDnpuh20pxoaZdRf693UC4eprMzPu8k3kRuqVkRAmj96DjSK_MZgOdCSOuCStEdYYGVDKSSULYORqQsioyUcj8El3FuCaEJrQcoNeFb12TLbrE4kkycbELe7xYfVvbuu0H9haP209oHZ75bcSd30Fo8IvZ4Rr2JpgGz39dY_Bzf9xBG6_RhU3F3BzrEL0_PrxNplk9f5pNxnUGrCi6jHIiJbNVVUlBcyC50JDLnGthgdGS2zI1S2MkaFOxnEMOkoslZ6aRQsCSD9HdwXcFrfoKbgNhrzw4NR3Xqp8RIRgTjP7QpJUHrQ4-xmDsCaBE9RmqlKE6ZaiOGSaOHrh-vfbfYZs--of5A7DDeIU</recordid><startdate>20240123</startdate><enddate>20240123</enddate><creator>Mpanga, Eunice Mumba</creator><creator>Wernert, Romain</creator><creator>Fauth, François</creator><creator>Suard, Emmanuelle</creator><creator>Avdeev, Maxim</creator><creator>Fraisse, Bernard</creator><creator>Camacho, Paula Sanz</creator><creator>Carlier, Dany</creator><creator>Lebedev, Oleg</creator><creator>Cassidy, Simon J.</creator><creator>Rousse, Gwenaëlle</creator><creator>Berthelot, Romain</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1534-2663</orcidid><orcidid>https://orcid.org/0000-0002-5086-4363</orcidid><orcidid>https://orcid.org/0000-0002-4297-1425</orcidid><orcidid>https://orcid.org/0000-0002-5073-4008</orcidid><orcidid>https://orcid.org/0000-0001-5966-5929</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0001-9465-3106</orcidid><orcidid>https://orcid.org/0000-0002-4006-5488</orcidid><orcidid>https://orcid.org/0000-0003-4898-8225</orcidid></search><sort><creationdate>20240123</creationdate><title>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</title><author>Mpanga, Eunice Mumba ; Wernert, Romain ; Fauth, François ; Suard, Emmanuelle ; Avdeev, Maxim ; Fraisse, Bernard ; Camacho, Paula Sanz ; Carlier, Dany ; Lebedev, Oleg ; Cassidy, Simon J. ; Rousse, Gwenaëlle ; Berthelot, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mpanga, Eunice Mumba</creatorcontrib><creatorcontrib>Wernert, Romain</creatorcontrib><creatorcontrib>Fauth, François</creatorcontrib><creatorcontrib>Suard, Emmanuelle</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Fraisse, Bernard</creatorcontrib><creatorcontrib>Camacho, Paula Sanz</creatorcontrib><creatorcontrib>Carlier, Dany</creatorcontrib><creatorcontrib>Lebedev, Oleg</creatorcontrib><creatorcontrib>Cassidy, Simon J.</creatorcontrib><creatorcontrib>Rousse, Gwenaëlle</creatorcontrib><creatorcontrib>Berthelot, Romain</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mpanga, Eunice Mumba</au><au>Wernert, Romain</au><au>Fauth, François</au><au>Suard, Emmanuelle</au><au>Avdeev, Maxim</au><au>Fraisse, Bernard</au><au>Camacho, Paula Sanz</au><au>Carlier, Dany</au><au>Lebedev, Oleg</au><au>Cassidy, Simon J.</au><au>Rousse, Gwenaëlle</au><au>Berthelot, Romain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-01-23</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>892</spage><epage>900</epage><pages>892-900</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Alkali transition-metal layered compounds usually contain only one type of alkali cation between the edge-shared octahedra layers. Herein, the ternary phase diagram A2Ni2TeO6 (A = Li, Na, K) was explored through solid-state synthesis and new alkali-mixed compositions showing alternation of distinct alkali layers are obtained. Such intergrowth structures are synthesized either by a single high-temperature treatment from raw chemicals or through reaction between layered precursors, the latter involving a solid-state process triggered at moderate temperatures. The in-depth characterization of the multiple cationic orderings is performed by combining powder diffraction techniques (X-rays and neutrons), high-resolution transmission electron microscopy, and solid-state NMR spectroscopy. In addition to the Ni/Te honeycomb ordering, alternation of lithium layers with sodium or potassium layers is observed for compositions (Li/Na)2Ni2TeO6 or (Li/K)2Ni2TeO6, respectively. Crystal structure solving was achieved by stacking building blocks of the respective single alkali layered oxides and unveiled a complex out-of-plane ordering of honeycomb layers. Moreover, a solid-state reaction between Li2Ni2TeO6 and NaKNi2TeO6 enables preparation of the new phase Li∼1Na∼0.5K∼0.5Ni2TeO6, a unique example containing up to three alkali cations and exhibiting a more complex stacking with sodium and potassium cations occupying the same layer. This investigation confirms that the chemical versatility of layered alkali transition-metal compounds could also occur on the alkali layer. Following the research methodology described here, we revisit the crystal chemistry of alkali transition-metal layered materials by exploring alkali ion substitutions previously thought infeasible, in order to find new alkali-mixed compositions.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.3c02749</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1534-2663</orcidid><orcidid>https://orcid.org/0000-0002-5086-4363</orcidid><orcidid>https://orcid.org/0000-0002-4297-1425</orcidid><orcidid>https://orcid.org/0000-0002-5073-4008</orcidid><orcidid>https://orcid.org/0000-0001-5966-5929</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0001-9465-3106</orcidid><orcidid>https://orcid.org/0000-0002-4006-5488</orcidid><orcidid>https://orcid.org/0000-0003-4898-8225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2024-01, Vol.36 (2), p.892-900 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04422421v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemical Sciences |
title | Solid-State Chemistry Shuffling of Alkali Ions toward New Layered Oxide Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20Chemistry%20Shuffling%20of%20Alkali%20Ions%20toward%20New%20Layered%20Oxide%20Materials&rft.jtitle=Chemistry%20of%20materials&rft.au=Mpanga,%20Eunice%20Mumba&rft.date=2024-01-23&rft.volume=36&rft.issue=2&rft.spage=892&rft.epage=900&rft.pages=892-900&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02749&rft_dat=%3Cacs_hal_p%3Eb956569159%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a277t-130552f9995416a064ca6563c4fa2183f8563bee5ace9263a6a534b32ed544ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |