Loading…
Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa
In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2)...
Saved in:
Published in: | Journal of chemical and engineering data 2021-02, Vol.66 (2), p.1055-1067 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413 |
---|---|
cites | cdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413 |
container_end_page | 1067 |
container_issue | 2 |
container_start_page | 1055 |
container_title | Journal of chemical and engineering data |
container_volume | 66 |
creator | Vargas, Karen Silva Katryniok, Benjamin Araque, Marcia |
description | In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process. |
doi_str_mv | 10.1021/acs.jced.0c00861 |
format | article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04467854v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c348242250</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</originalsourceid><addsrcrecordid>eNqdkl1LwzAYhasoOD_uvcylg2XmTZM29c7vCRMHfl2WtEtZZtfWpJPtbn9B_If-Els7BUFRvEngvM85SchxnF0gXSAU9mVsu-NYDbskJkR4sOq0gFOCObhszWmRisEB98SGs2ntmBDCfAqtlfsLm0fS6BjdySI3r4uXvn6c6iE6rdZUR0ZPJ-hElhIluUHXeoaOdCbNHF3Pbakm9gANTF5gilWGAecp2oN2FdJTM5lVai3QducXKFMN9UX4ew7Dl6oczVNcqKz8F_5xAZkNEXtdPH8LNObvpu-nIVkiINB1KXoYyG1nPZGpVTvLfcu5PTu9Oe7h_tX5xfFhH0uXeyUOIOGCJW5EPU49zw-YCIQKoogQcFUipIhEwn0luA88iBPXG1IXZCCET5lg4G457SZ3JNOwMHpS_U2YSx32DvthrRHGPF9w9lSzpGFjk1trVPJpABLWJQqrEoV1icJliSpLp7G8T_KpyarH_Iy_AUfSxeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Vargas, Karen Silva ; Katryniok, Benjamin ; Araque, Marcia</creator><creatorcontrib>Vargas, Karen Silva ; Katryniok, Benjamin ; Araque, Marcia</creatorcontrib><description>In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process.</description><identifier>ISSN: 0021-9568</identifier><identifier>EISSN: 1520-5134</identifier><identifier>DOI: 10.1021/acs.jced.0c00861</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences</subject><ispartof>Journal of chemical and engineering data, 2021-02, Vol.66 (2), p.1055-1067</ispartof><rights>2021 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</citedby><cites>FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</cites><orcidid>0000-0003-0545-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-04467854$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vargas, Karen Silva</creatorcontrib><creatorcontrib>Katryniok, Benjamin</creatorcontrib><creatorcontrib>Araque, Marcia</creatorcontrib><title>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</title><title>Journal of chemical and engineering data</title><addtitle>J. Chem. Eng. Data</addtitle><description>In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><issn>0021-9568</issn><issn>1520-5134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkl1LwzAYhasoOD_uvcylg2XmTZM29c7vCRMHfl2WtEtZZtfWpJPtbn9B_If-Els7BUFRvEngvM85SchxnF0gXSAU9mVsu-NYDbskJkR4sOq0gFOCObhszWmRisEB98SGs2ntmBDCfAqtlfsLm0fS6BjdySI3r4uXvn6c6iE6rdZUR0ZPJ-hElhIluUHXeoaOdCbNHF3Pbakm9gANTF5gilWGAecp2oN2FdJTM5lVai3QducXKFMN9UX4ew7Dl6oczVNcqKz8F_5xAZkNEXtdPH8LNObvpu-nIVkiINB1KXoYyG1nPZGpVTvLfcu5PTu9Oe7h_tX5xfFhH0uXeyUOIOGCJW5EPU49zw-YCIQKoogQcFUipIhEwn0luA88iBPXG1IXZCCET5lg4G457SZ3JNOwMHpS_U2YSx32DvthrRHGPF9w9lSzpGFjk1trVPJpABLWJQqrEoV1icJliSpLp7G8T_KpyarH_Iy_AUfSxeA</recordid><startdate>20210211</startdate><enddate>20210211</enddate><creator>Vargas, Karen Silva</creator><creator>Katryniok, Benjamin</creator><creator>Araque, Marcia</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0545-416X</orcidid></search><sort><creationdate>20210211</creationdate><title>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</title><author>Vargas, Karen Silva ; Katryniok, Benjamin ; Araque, Marcia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vargas, Karen Silva</creatorcontrib><creatorcontrib>Katryniok, Benjamin</creatorcontrib><creatorcontrib>Araque, Marcia</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemical and engineering data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargas, Karen Silva</au><au>Katryniok, Benjamin</au><au>Araque, Marcia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</atitle><jtitle>Journal of chemical and engineering data</jtitle><addtitle>J. Chem. Eng. Data</addtitle><date>2021-02-11</date><risdate>2021</risdate><volume>66</volume><issue>2</issue><spage>1055</spage><epage>1067</epage><pages>1055-1067</pages><issn>0021-9568</issn><eissn>1520-5134</eissn><abstract>In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jced.0c00861</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0545-416X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9568 |
ispartof | Journal of chemical and engineering data, 2021-02, Vol.66 (2), p.1055-1067 |
issn | 0021-9568 1520-5134 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04467854v1 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Catalysis Chemical Sciences |
title | Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isobaric%20Vapor%E2%80%93Liquid%20Equilibrium%20Data%20for%20Six%20Binary%20Systems:%20Prop-2-en-1-ol%20(1)%E2%80%93Hexan-2-ol%20(2),%20Prop-2-en-1-ol%20(1)%E2%80%93Hexan-2-one%20(2),%20Hexan-2-one%20(1)%E2%80%93Hexan-2-ol%20(2),%20Prop-2-en-1-ol%20(1)%E2%80%934-Methyl-pentan-2-ol%20(2),%20Prop-2-en-1-ol%20(1)%E2%80%934-Methyl-pentan-2-one%20(2),%20and%204%E2%80%91Methyl-pentan-2-one%20(1)%E2%80%934%E2%80%91Methyl-pentan-2-ol%20(2)%20at%20101.32%20kPa&rft.jtitle=Journal%20of%20chemical%20and%20engineering%20data&rft.au=Vargas,%20Karen%20Silva&rft.date=2021-02-11&rft.volume=66&rft.issue=2&rft.spage=1055&rft.epage=1067&rft.pages=1055-1067&rft.issn=0021-9568&rft.eissn=1520-5134&rft_id=info:doi/10.1021/acs.jced.0c00861&rft_dat=%3Cacs_hal_p%3Ec348242250%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |