Loading…

Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa

In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical and engineering data 2021-02, Vol.66 (2), p.1055-1067
Main Authors: Vargas, Karen Silva, Katryniok, Benjamin, Araque, Marcia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413
cites cdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413
container_end_page 1067
container_issue 2
container_start_page 1055
container_title Journal of chemical and engineering data
container_volume 66
creator Vargas, Karen Silva
Katryniok, Benjamin
Araque, Marcia
description In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process.
doi_str_mv 10.1021/acs.jced.0c00861
format article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04467854v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c348242250</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</originalsourceid><addsrcrecordid>eNqdkl1LwzAYhasoOD_uvcylg2XmTZM29c7vCRMHfl2WtEtZZtfWpJPtbn9B_If-Els7BUFRvEngvM85SchxnF0gXSAU9mVsu-NYDbskJkR4sOq0gFOCObhszWmRisEB98SGs2ntmBDCfAqtlfsLm0fS6BjdySI3r4uXvn6c6iE6rdZUR0ZPJ-hElhIluUHXeoaOdCbNHF3Pbakm9gANTF5gilWGAecp2oN2FdJTM5lVai3QducXKFMN9UX4ew7Dl6oczVNcqKz8F_5xAZkNEXtdPH8LNObvpu-nIVkiINB1KXoYyG1nPZGpVTvLfcu5PTu9Oe7h_tX5xfFhH0uXeyUOIOGCJW5EPU49zw-YCIQKoogQcFUipIhEwn0luA88iBPXG1IXZCCET5lg4G457SZ3JNOwMHpS_U2YSx32DvthrRHGPF9w9lSzpGFjk1trVPJpABLWJQqrEoV1icJliSpLp7G8T_KpyarH_Iy_AUfSxeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Vargas, Karen Silva ; Katryniok, Benjamin ; Araque, Marcia</creator><creatorcontrib>Vargas, Karen Silva ; Katryniok, Benjamin ; Araque, Marcia</creatorcontrib><description>In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process.</description><identifier>ISSN: 0021-9568</identifier><identifier>EISSN: 1520-5134</identifier><identifier>DOI: 10.1021/acs.jced.0c00861</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences</subject><ispartof>Journal of chemical and engineering data, 2021-02, Vol.66 (2), p.1055-1067</ispartof><rights>2021 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</citedby><cites>FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</cites><orcidid>0000-0003-0545-416X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.univ-lille.fr/hal-04467854$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vargas, Karen Silva</creatorcontrib><creatorcontrib>Katryniok, Benjamin</creatorcontrib><creatorcontrib>Araque, Marcia</creatorcontrib><title>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</title><title>Journal of chemical and engineering data</title><addtitle>J. Chem. Eng. Data</addtitle><description>In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><issn>0021-9568</issn><issn>1520-5134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkl1LwzAYhasoOD_uvcylg2XmTZM29c7vCRMHfl2WtEtZZtfWpJPtbn9B_If-Els7BUFRvEngvM85SchxnF0gXSAU9mVsu-NYDbskJkR4sOq0gFOCObhszWmRisEB98SGs2ntmBDCfAqtlfsLm0fS6BjdySI3r4uXvn6c6iE6rdZUR0ZPJ-hElhIluUHXeoaOdCbNHF3Pbakm9gANTF5gilWGAecp2oN2FdJTM5lVai3QducXKFMN9UX4ew7Dl6oczVNcqKz8F_5xAZkNEXtdPH8LNObvpu-nIVkiINB1KXoYyG1nPZGpVTvLfcu5PTu9Oe7h_tX5xfFhH0uXeyUOIOGCJW5EPU49zw-YCIQKoogQcFUipIhEwn0luA88iBPXG1IXZCCET5lg4G457SZ3JNOwMHpS_U2YSx32DvthrRHGPF9w9lSzpGFjk1trVPJpABLWJQqrEoV1icJliSpLp7G8T_KpyarH_Iy_AUfSxeA</recordid><startdate>20210211</startdate><enddate>20210211</enddate><creator>Vargas, Karen Silva</creator><creator>Katryniok, Benjamin</creator><creator>Araque, Marcia</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0545-416X</orcidid></search><sort><creationdate>20210211</creationdate><title>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</title><author>Vargas, Karen Silva ; Katryniok, Benjamin ; Araque, Marcia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vargas, Karen Silva</creatorcontrib><creatorcontrib>Katryniok, Benjamin</creatorcontrib><creatorcontrib>Araque, Marcia</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemical and engineering data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargas, Karen Silva</au><au>Katryniok, Benjamin</au><au>Araque, Marcia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa</atitle><jtitle>Journal of chemical and engineering data</jtitle><addtitle>J. Chem. Eng. Data</addtitle><date>2021-02-11</date><risdate>2021</risdate><volume>66</volume><issue>2</issue><spage>1055</spage><epage>1067</epage><pages>1055-1067</pages><issn>0021-9568</issn><eissn>1520-5134</eissn><abstract>In this work, isobaric vapor–liquid equilibrium (VLE) measurements were conducted for the binary systems of prop-2-en-1-ol (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–hexan-2-one (2), hexan-2-one (1)–hexan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-ol (2), prop-2-en-1-ol (1)–4-methyl-pentan-2-one (2), and 4-methyl-pentan-2-one (1)–4-methyl-pentan-2-ol (2) to assist with the design of the separation process by distillation. Measurements were determined using Fischer VLE 602 equipment at 101.32 kPa. The thermodynamic consistency of the measured VLE data was validated by modified Herington, Van Ness, pure component consistency, and Redlich–Kister total area tests. Moreover, data sets were correlated using the nonrandom two-liquid (NRTL), universal quasichemical (UNIQUAC), and Wilson thermodynamic models to obtain the binary interaction parameters using the Aspen Plus V11 commercial software. The root-mean-square deviations (RMSDs) of the equilibrium temperature (T) and the vapor mole fraction (yi ) were less than 0.24 and 0.0089, respectively, which indicate that these three thermodynamic models can be used to correlate the six binary systems and therefore they can be employed for the development and optimization of the separation process.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jced.0c00861</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0545-416X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9568
ispartof Journal of chemical and engineering data, 2021-02, Vol.66 (2), p.1055-1067
issn 0021-9568
1520-5134
language eng
recordid cdi_hal_primary_oai_HAL_hal_04467854v1
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysis
Chemical Sciences
title Isobaric Vapor–Liquid Equilibrium Data for Six Binary Systems: Prop-2-en-1-ol (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–Hexan-2-one (2), Hexan-2-one (1)–Hexan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-ol (2), Prop-2-en-1-ol (1)–4-Methyl-pentan-2-one (2), and 4‑Methyl-pentan-2-one (1)–4‑Methyl-pentan-2-ol (2) at 101.32 kPa
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isobaric%20Vapor%E2%80%93Liquid%20Equilibrium%20Data%20for%20Six%20Binary%20Systems:%20Prop-2-en-1-ol%20(1)%E2%80%93Hexan-2-ol%20(2),%20Prop-2-en-1-ol%20(1)%E2%80%93Hexan-2-one%20(2),%20Hexan-2-one%20(1)%E2%80%93Hexan-2-ol%20(2),%20Prop-2-en-1-ol%20(1)%E2%80%934-Methyl-pentan-2-ol%20(2),%20Prop-2-en-1-ol%20(1)%E2%80%934-Methyl-pentan-2-one%20(2),%20and%204%E2%80%91Methyl-pentan-2-one%20(1)%E2%80%934%E2%80%91Methyl-pentan-2-ol%20(2)%20at%20101.32%20kPa&rft.jtitle=Journal%20of%20chemical%20and%20engineering%20data&rft.au=Vargas,%20Karen%20Silva&rft.date=2021-02-11&rft.volume=66&rft.issue=2&rft.spage=1055&rft.epage=1067&rft.pages=1055-1067&rft.issn=0021-9568&rft.eissn=1520-5134&rft_id=info:doi/10.1021/acs.jced.0c00861&rft_dat=%3Cacs_hal_p%3Ec348242250%3C/acs_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a356t-91f584f3b265266794898e9bb0013ef8a8b8f57e857159cf36d231a9887248413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true