Loading…

On the Connections Between Various Stability Notions for Linear 2-D Discrete Models

In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2023-12, Vol.68 (12), p.7919-7926
Main Authors: Bachelier, Olivier, Cluzeau, Thomas, Rigaud, Alexandre, Alvarez, Francisco José Silva, Yeganefar, Nader, Yeganefar, Nima
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713
cites cdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713
container_end_page 7926
container_issue 12
container_start_page 7919
container_title IEEE transactions on automatic control
container_volume 68
creator Bachelier, Olivier
Cluzeau, Thomas
Rigaud, Alexandre
Alvarez, Francisco José Silva
Yeganefar, Nader
Yeganefar, Nima
description In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability.
doi_str_mv 10.1109/TAC.2023.3259976
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04475557v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899219985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3jwFPHjrzo0ma4-zUCdUdNr2GtP3KOmozk07Zf29Lh6eP9-Ph5eVB6JaSGaVEP2zm6YwRxmecCa2VPEMTKkQSMcH4OZoQQpNIs0ReoqsQdn2UcUwnaL1qcbcFnLq2haKrXRvwI3S_AC3-tL52h4DXnc3rpu6O-N2NROU8zuoWrMcsWuBFHQoPHeA3V0ITrtFFZZsAN6c7RR_PT5t0GWWrl9d0nkUFJ6KLuKJS5byUhIBQhWJxLIkEWRa5jpnmuaIAMpYWtFSFZCAqK2Wi8lKXUCnKp-h-7N3axux9_WX90Thbm-U8M8OPxLESQqifgb0b2b133wcIndm5g2_7eYYlWjOqdSJ6ioxU4V0IHqr_WkrMoNn0ms2g2Zw08z-0Sm21</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899219985</pqid></control><display><type>article</type><title>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</title><source>IEEE Xplore (Online service)</source><creator>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Alvarez, Francisco José Silva ; Yeganefar, Nader ; Yeganefar, Nima</creator><creatorcontrib>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Alvarez, Francisco José Silva ; Yeganefar, Nader ; Yeganefar, Nima</creatorcontrib><description>In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3259976</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Asymptotic properties ; Automatic Control Engineering ; Computer Science ; Structural stability ; Two dimensional models</subject><ispartof>IEEE transactions on automatic control, 2023-12, Vol.68 (12), p.7919-7926</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</citedby><cites>FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</cites><orcidid>0000-0001-6465-7261 ; 0009-0000-4390-8367 ; 0000-0003-0796-2838 ; 0000-0002-6735-3447 ; 0000-0002-1655-891X ; 0000-0002-6030-9419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04475557$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Alvarez, Francisco José Silva</creatorcontrib><creatorcontrib>Yeganefar, Nader</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><title>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</title><title>IEEE transactions on automatic control</title><description>In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability.</description><subject>Asymptotic properties</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Structural stability</subject><subject>Two dimensional models</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKd3jwFPHjrzo0ma4-zUCdUdNr2GtP3KOmozk07Zf29Lh6eP9-Ph5eVB6JaSGaVEP2zm6YwRxmecCa2VPEMTKkQSMcH4OZoQQpNIs0ReoqsQdn2UcUwnaL1qcbcFnLq2haKrXRvwI3S_AC3-tL52h4DXnc3rpu6O-N2NROU8zuoWrMcsWuBFHQoPHeA3V0ITrtFFZZsAN6c7RR_PT5t0GWWrl9d0nkUFJ6KLuKJS5byUhIBQhWJxLIkEWRa5jpnmuaIAMpYWtFSFZCAqK2Wi8lKXUCnKp-h-7N3axux9_WX90Thbm-U8M8OPxLESQqifgb0b2b133wcIndm5g2_7eYYlWjOqdSJ6ioxU4V0IHqr_WkrMoNn0ms2g2Zw08z-0Sm21</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bachelier, Olivier</creator><creator>Cluzeau, Thomas</creator><creator>Rigaud, Alexandre</creator><creator>Alvarez, Francisco José Silva</creator><creator>Yeganefar, Nader</creator><creator>Yeganefar, Nima</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0009-0000-4390-8367</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid><orcidid>https://orcid.org/0000-0002-6735-3447</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid></search><sort><creationdate>20231201</creationdate><title>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</title><author>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Alvarez, Francisco José Silva ; Yeganefar, Nader ; Yeganefar, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Structural stability</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Alvarez, Francisco José Silva</creatorcontrib><creatorcontrib>Yeganefar, Nader</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachelier, Olivier</au><au>Cluzeau, Thomas</au><au>Rigaud, Alexandre</au><au>Alvarez, Francisco José Silva</au><au>Yeganefar, Nader</au><au>Yeganefar, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>68</volume><issue>12</issue><spage>7919</spage><epage>7926</epage><pages>7919-7926</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><abstract>In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TAC.2023.3259976</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0009-0000-4390-8367</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid><orcidid>https://orcid.org/0000-0002-6735-3447</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2023-12, Vol.68 (12), p.7919-7926
issn 0018-9286
1558-2523
language eng
recordid cdi_hal_primary_oai_HAL_hal_04475557v1
source IEEE Xplore (Online service)
subjects Asymptotic properties
Automatic Control Engineering
Computer Science
Structural stability
Two dimensional models
title On the Connections Between Various Stability Notions for Linear 2-D Discrete Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Connections%20Between%20Various%20Stability%20Notions%20for%20Linear%202-D%20Discrete%20Models&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bachelier,%20Olivier&rft.date=2023-12-01&rft.volume=68&rft.issue=12&rft.spage=7919&rft.epage=7926&rft.pages=7919-7926&rft.issn=0018-9286&rft.eissn=1558-2523&rft_id=info:doi/10.1109/TAC.2023.3259976&rft_dat=%3Cproquest_hal_p%3E2899219985%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899219985&rft_id=info:pmid/&rfr_iscdi=true