Loading…
On the Connections Between Various Stability Notions for Linear 2-D Discrete Models
In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitio...
Saved in:
Published in: | IEEE transactions on automatic control 2023-12, Vol.68 (12), p.7919-7926 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713 |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713 |
container_end_page | 7926 |
container_issue | 12 |
container_start_page | 7919 |
container_title | IEEE transactions on automatic control |
container_volume | 68 |
creator | Bachelier, Olivier Cluzeau, Thomas Rigaud, Alexandre Alvarez, Francisco José Silva Yeganefar, Nader Yeganefar, Nima |
description | In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability. |
doi_str_mv | 10.1109/TAC.2023.3259976 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04475557v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899219985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKd3jwFPHjrzo0ma4-zUCdUdNr2GtP3KOmozk07Zf29Lh6eP9-Ph5eVB6JaSGaVEP2zm6YwRxmecCa2VPEMTKkQSMcH4OZoQQpNIs0ReoqsQdn2UcUwnaL1qcbcFnLq2haKrXRvwI3S_AC3-tL52h4DXnc3rpu6O-N2NROU8zuoWrMcsWuBFHQoPHeA3V0ITrtFFZZsAN6c7RR_PT5t0GWWrl9d0nkUFJ6KLuKJS5byUhIBQhWJxLIkEWRa5jpnmuaIAMpYWtFSFZCAqK2Wi8lKXUCnKp-h-7N3axux9_WX90Thbm-U8M8OPxLESQqifgb0b2b133wcIndm5g2_7eYYlWjOqdSJ6ioxU4V0IHqr_WkrMoNn0ms2g2Zw08z-0Sm21</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899219985</pqid></control><display><type>article</type><title>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</title><source>IEEE Xplore (Online service)</source><creator>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Alvarez, Francisco José Silva ; Yeganefar, Nader ; Yeganefar, Nima</creator><creatorcontrib>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Alvarez, Francisco José Silva ; Yeganefar, Nader ; Yeganefar, Nima</creatorcontrib><description>In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3259976</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Asymptotic properties ; Automatic Control Engineering ; Computer Science ; Structural stability ; Two dimensional models</subject><ispartof>IEEE transactions on automatic control, 2023-12, Vol.68 (12), p.7919-7926</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</citedby><cites>FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</cites><orcidid>0000-0001-6465-7261 ; 0009-0000-4390-8367 ; 0000-0003-0796-2838 ; 0000-0002-6735-3447 ; 0000-0002-1655-891X ; 0000-0002-6030-9419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04475557$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Alvarez, Francisco José Silva</creatorcontrib><creatorcontrib>Yeganefar, Nader</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><title>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</title><title>IEEE transactions on automatic control</title><description>In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability.</description><subject>Asymptotic properties</subject><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Structural stability</subject><subject>Two dimensional models</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKd3jwFPHjrzo0ma4-zUCdUdNr2GtP3KOmozk07Zf29Lh6eP9-Ph5eVB6JaSGaVEP2zm6YwRxmecCa2VPEMTKkQSMcH4OZoQQpNIs0ReoqsQdn2UcUwnaL1qcbcFnLq2haKrXRvwI3S_AC3-tL52h4DXnc3rpu6O-N2NROU8zuoWrMcsWuBFHQoPHeA3V0ITrtFFZZsAN6c7RR_PT5t0GWWrl9d0nkUFJ6KLuKJS5byUhIBQhWJxLIkEWRa5jpnmuaIAMpYWtFSFZCAqK2Wi8lKXUCnKp-h-7N3axux9_WX90Thbm-U8M8OPxLESQqifgb0b2b133wcIndm5g2_7eYYlWjOqdSJ6ioxU4V0IHqr_WkrMoNn0ms2g2Zw08z-0Sm21</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bachelier, Olivier</creator><creator>Cluzeau, Thomas</creator><creator>Rigaud, Alexandre</creator><creator>Alvarez, Francisco José Silva</creator><creator>Yeganefar, Nader</creator><creator>Yeganefar, Nima</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0009-0000-4390-8367</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid><orcidid>https://orcid.org/0000-0002-6735-3447</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid></search><sort><creationdate>20231201</creationdate><title>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</title><author>Bachelier, Olivier ; Cluzeau, Thomas ; Rigaud, Alexandre ; Alvarez, Francisco José Silva ; Yeganefar, Nader ; Yeganefar, Nima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Structural stability</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachelier, Olivier</creatorcontrib><creatorcontrib>Cluzeau, Thomas</creatorcontrib><creatorcontrib>Rigaud, Alexandre</creatorcontrib><creatorcontrib>Alvarez, Francisco José Silva</creatorcontrib><creatorcontrib>Yeganefar, Nader</creatorcontrib><creatorcontrib>Yeganefar, Nima</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachelier, Olivier</au><au>Cluzeau, Thomas</au><au>Rigaud, Alexandre</au><au>Alvarez, Francisco José Silva</au><au>Yeganefar, Nader</au><au>Yeganefar, Nima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Connections Between Various Stability Notions for Linear 2-D Discrete Models</atitle><jtitle>IEEE transactions on automatic control</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>68</volume><issue>12</issue><spage>7919</spage><epage>7926</epage><pages>7919-7926</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><abstract>In this article, we review different stability definitions that have been used in the literature concerning 2-D Roesser or Fornasini–Marchesini models: structural stability, asymptotic stability, and two different notions of exponential stability. We clarify the relations between all these definitions for the linear case: the two notions of exponential stability and structural stability are all equivalent and they imply asymptotic stability.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TAC.2023.3259976</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6465-7261</orcidid><orcidid>https://orcid.org/0009-0000-4390-8367</orcidid><orcidid>https://orcid.org/0000-0003-0796-2838</orcidid><orcidid>https://orcid.org/0000-0002-6735-3447</orcidid><orcidid>https://orcid.org/0000-0002-1655-891X</orcidid><orcidid>https://orcid.org/0000-0002-6030-9419</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2023-12, Vol.68 (12), p.7919-7926 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04475557v1 |
source | IEEE Xplore (Online service) |
subjects | Asymptotic properties Automatic Control Engineering Computer Science Structural stability Two dimensional models |
title | On the Connections Between Various Stability Notions for Linear 2-D Discrete Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Connections%20Between%20Various%20Stability%20Notions%20for%20Linear%202-D%20Discrete%20Models&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bachelier,%20Olivier&rft.date=2023-12-01&rft.volume=68&rft.issue=12&rft.spage=7919&rft.epage=7926&rft.pages=7919-7926&rft.issn=0018-9286&rft.eissn=1558-2523&rft_id=info:doi/10.1109/TAC.2023.3259976&rft_dat=%3Cproquest_hal_p%3E2899219985%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-37167b3d600e57c7244606e6dcb94293b71ee646ae967c62e5fa6687bd9def713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2899219985&rft_id=info:pmid/&rfr_iscdi=true |