Loading…

Limited-transpiration trait in response to high vapor pressure deficit from wild to cultivated species: study of the Lens genus

Abstract Lentil (Lens culinaris Medik.) is commonly grown in drought-prone areas where terminal heat and drought are frequent. The limited-transpiration (TRlim) trait under high vapor pressure deficit (VPD) could be a way to conserve water and increase yield under water deficit conditions. The TRlim...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2023-09, Vol.74 (16), p.4875-4887
Main Authors: Rouichi, Salma, Idrissi, Omar, Sohail, Quahir, Marrou, Hélène, Sinclair, Thomas R, Hejjaoui, Kamal, Amri, Moez, Ghanem, Michel Edmond
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Lentil (Lens culinaris Medik.) is commonly grown in drought-prone areas where terminal heat and drought are frequent. The limited-transpiration (TRlim) trait under high vapor pressure deficit (VPD) could be a way to conserve water and increase yield under water deficit conditions. The TRlim trait was examined in cultivated and wild lentil species together with its evolution throughout the breeding pipeline. Sixty-one accessions representing the six wild lentil species (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) and 13 interspecific advanced lines were evaluated in their transpiration response to high VPD. A large variation in transpiration rate (TR) response to increased VPD was recorded among wild lentil accessions, with 43 accessions exhibiting a breakpoint (BP) in their TR response to increasing VPD, with values ranging from 0.92 kPa to 3.38 kPa under greenhouse conditions. Ten genotypes for the interspecific advanced lines displayed a BP with an average of 1.95 kPa, much lower than previously reported for cultivated lentil. Results from field experiments suggest that the TRlim trait (BP=0.97 kPa) positively affected yield and yield-related parameters during the years with late-season water stress. The selection of TRlim genotypes for high VPD environments could improve lentil productivity in drought-prone areas. Many wild lentil accessions expressed a breakpoint in the transpiration rate response to increasing vapor pressure deficit (VPD) that occurred at a much lower VPD than previously reported in cultivated lentil.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/erad264