Loading…

Adaptive algorithms for blind channel equalization in impulsive noise

•Exploiting Wijsman’s theorem, we obtain a test statistic serving as an admissible cost function for blind equalization robust to impulsive noise.•We establish the admissibility of the proposed cost function under multipath scenario.•We derive two realizations of adaptive equalizers, and provide sim...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing 2022-12, Vol.201, p.108626, Article 108626
Main Authors: Abrar, Shafayat, Zerguine, Azzedine, Abed-Meraim, Karim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c270t-9b4eaebd87a2bcb9aa2619f94fd0cbdd02a68417d5f3f1ea711fd3e5d858bebb3
cites cdi_FETCH-LOGICAL-c270t-9b4eaebd87a2bcb9aa2619f94fd0cbdd02a68417d5f3f1ea711fd3e5d858bebb3
container_end_page
container_issue
container_start_page 108626
container_title Signal processing
container_volume 201
creator Abrar, Shafayat
Zerguine, Azzedine
Abed-Meraim, Karim
description •Exploiting Wijsman’s theorem, we obtain a test statistic serving as an admissible cost function for blind equalization robust to impulsive noise.•We establish the admissibility of the proposed cost function under multipath scenario.•We derive two realizations of adaptive equalizers, and provide simulations on the convergence behaviour of all addressed equalizers.•Using energy conservation, we provide selective-update analysis of one of the proposed equalizers, and obtain a bound for its step-size. The unsupervised adaptive mitigation of intersymbol interference in an additive impulsive noise environment, modeled as generalized Gaussian, is dealt in this work. The theory of statistical invariance, Wijsman’s theorem, is used to develop a maximal-invariant test to discriminate equally-likely pulsed signals against impulsive disturbance leading to an admissible cost function for blind equalization. The cost function is optimized to realize two adaptive equalizers capable of not only mitigating intersymbol interference but also robust to impulsive disturbance. Numerical simulations, obtained on a baseband digital microwave radio system for amplitude-phase shift keying signaling in an additive (generalized Gaussian and symmetric-alpha stable) impulsive environment, confirm the admissibility of the proposed equalizers in terms of robustness and steady convergence.
doi_str_mv 10.1016/j.sigpro.2022.108626
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04487050v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168422001669</els_id><sourcerecordid>S0165168422001669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9b4eaebd87a2bcb9aa2619f94fd0cbdd02a68417d5f3f1ea711fd3e5d858bebb3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwMNePWxNsn-yexFKqVYoeNFzmCSTNmW7WZNtQT-9u6x4FAYGHu_3mHmE3DO6YJSVj4dFdLsu-AWnnA9SVfLygsxYJXgqikJcktlgK1JWVvk1uYnxQCllWUlnZL000PXujAk0Ox9cvz_GxPqQqMa1JtF7aFtsEvw8QeO-oXe-Tdwwx-7UxBFrvYt4S64sNBHvfvecfDyv31ebdPv28rpablPNBe3TWuUIqEwlgCutagBestrWuTVUK2Moh-FCJkxhM8sQBGPWZFiYqqgUKpXNycOUu4dGdsEdIXxJD05ulls5ajTPK0ELemaDN5-8OvgYA9o_gFE51iYPcqpNjrXJqbYBe5owHP44OwwyaoetRuMC6l4a7_4P-AH4-Hmn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive algorithms for blind channel equalization in impulsive noise</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Abrar, Shafayat ; Zerguine, Azzedine ; Abed-Meraim, Karim</creator><creatorcontrib>Abrar, Shafayat ; Zerguine, Azzedine ; Abed-Meraim, Karim</creatorcontrib><description>•Exploiting Wijsman’s theorem, we obtain a test statistic serving as an admissible cost function for blind equalization robust to impulsive noise.•We establish the admissibility of the proposed cost function under multipath scenario.•We derive two realizations of adaptive equalizers, and provide simulations on the convergence behaviour of all addressed equalizers.•Using energy conservation, we provide selective-update analysis of one of the proposed equalizers, and obtain a bound for its step-size. The unsupervised adaptive mitigation of intersymbol interference in an additive impulsive noise environment, modeled as generalized Gaussian, is dealt in this work. The theory of statistical invariance, Wijsman’s theorem, is used to develop a maximal-invariant test to discriminate equally-likely pulsed signals against impulsive disturbance leading to an admissible cost function for blind equalization. The cost function is optimized to realize two adaptive equalizers capable of not only mitigating intersymbol interference but also robust to impulsive disturbance. Numerical simulations, obtained on a baseband digital microwave radio system for amplitude-phase shift keying signaling in an additive (generalized Gaussian and symmetric-alpha stable) impulsive environment, confirm the admissibility of the proposed equalizers in terms of robustness and steady convergence.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2022.108626</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive filter ; Blind equalization ; Engineering Sciences ; Generalized Gaussian distribution ; Impulsive noise ; Maximal-invariance ; Signal and Image processing</subject><ispartof>Signal processing, 2022-12, Vol.201, p.108626, Article 108626</ispartof><rights>2022 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-9b4eaebd87a2bcb9aa2619f94fd0cbdd02a68417d5f3f1ea711fd3e5d858bebb3</citedby><cites>FETCH-LOGICAL-c270t-9b4eaebd87a2bcb9aa2619f94fd0cbdd02a68417d5f3f1ea711fd3e5d858bebb3</cites><orcidid>0000-0002-2621-4969 ; 0000-0003-2652-1923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04487050$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrar, Shafayat</creatorcontrib><creatorcontrib>Zerguine, Azzedine</creatorcontrib><creatorcontrib>Abed-Meraim, Karim</creatorcontrib><title>Adaptive algorithms for blind channel equalization in impulsive noise</title><title>Signal processing</title><description>•Exploiting Wijsman’s theorem, we obtain a test statistic serving as an admissible cost function for blind equalization robust to impulsive noise.•We establish the admissibility of the proposed cost function under multipath scenario.•We derive two realizations of adaptive equalizers, and provide simulations on the convergence behaviour of all addressed equalizers.•Using energy conservation, we provide selective-update analysis of one of the proposed equalizers, and obtain a bound for its step-size. The unsupervised adaptive mitigation of intersymbol interference in an additive impulsive noise environment, modeled as generalized Gaussian, is dealt in this work. The theory of statistical invariance, Wijsman’s theorem, is used to develop a maximal-invariant test to discriminate equally-likely pulsed signals against impulsive disturbance leading to an admissible cost function for blind equalization. The cost function is optimized to realize two adaptive equalizers capable of not only mitigating intersymbol interference but also robust to impulsive disturbance. Numerical simulations, obtained on a baseband digital microwave radio system for amplitude-phase shift keying signaling in an additive (generalized Gaussian and symmetric-alpha stable) impulsive environment, confirm the admissibility of the proposed equalizers in terms of robustness and steady convergence.</description><subject>Adaptive filter</subject><subject>Blind equalization</subject><subject>Engineering Sciences</subject><subject>Generalized Gaussian distribution</subject><subject>Impulsive noise</subject><subject>Maximal-invariance</subject><subject>Signal and Image processing</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwMNePWxNsn-yexFKqVYoeNFzmCSTNmW7WZNtQT-9u6x4FAYGHu_3mHmE3DO6YJSVj4dFdLsu-AWnnA9SVfLygsxYJXgqikJcktlgK1JWVvk1uYnxQCllWUlnZL000PXujAk0Ox9cvz_GxPqQqMa1JtF7aFtsEvw8QeO-oXe-Tdwwx-7UxBFrvYt4S64sNBHvfvecfDyv31ebdPv28rpablPNBe3TWuUIqEwlgCutagBestrWuTVUK2Moh-FCJkxhM8sQBGPWZFiYqqgUKpXNycOUu4dGdsEdIXxJD05ulls5ajTPK0ELemaDN5-8OvgYA9o_gFE51iYPcqpNjrXJqbYBe5owHP44OwwyaoetRuMC6l4a7_4P-AH4-Hmn</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Abrar, Shafayat</creator><creator>Zerguine, Azzedine</creator><creator>Abed-Meraim, Karim</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2621-4969</orcidid><orcidid>https://orcid.org/0000-0003-2652-1923</orcidid></search><sort><creationdate>202212</creationdate><title>Adaptive algorithms for blind channel equalization in impulsive noise</title><author>Abrar, Shafayat ; Zerguine, Azzedine ; Abed-Meraim, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9b4eaebd87a2bcb9aa2619f94fd0cbdd02a68417d5f3f1ea711fd3e5d858bebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive filter</topic><topic>Blind equalization</topic><topic>Engineering Sciences</topic><topic>Generalized Gaussian distribution</topic><topic>Impulsive noise</topic><topic>Maximal-invariance</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrar, Shafayat</creatorcontrib><creatorcontrib>Zerguine, Azzedine</creatorcontrib><creatorcontrib>Abed-Meraim, Karim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrar, Shafayat</au><au>Zerguine, Azzedine</au><au>Abed-Meraim, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive algorithms for blind channel equalization in impulsive noise</atitle><jtitle>Signal processing</jtitle><date>2022-12</date><risdate>2022</risdate><volume>201</volume><spage>108626</spage><pages>108626-</pages><artnum>108626</artnum><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>•Exploiting Wijsman’s theorem, we obtain a test statistic serving as an admissible cost function for blind equalization robust to impulsive noise.•We establish the admissibility of the proposed cost function under multipath scenario.•We derive two realizations of adaptive equalizers, and provide simulations on the convergence behaviour of all addressed equalizers.•Using energy conservation, we provide selective-update analysis of one of the proposed equalizers, and obtain a bound for its step-size. The unsupervised adaptive mitigation of intersymbol interference in an additive impulsive noise environment, modeled as generalized Gaussian, is dealt in this work. The theory of statistical invariance, Wijsman’s theorem, is used to develop a maximal-invariant test to discriminate equally-likely pulsed signals against impulsive disturbance leading to an admissible cost function for blind equalization. The cost function is optimized to realize two adaptive equalizers capable of not only mitigating intersymbol interference but also robust to impulsive disturbance. Numerical simulations, obtained on a baseband digital microwave radio system for amplitude-phase shift keying signaling in an additive (generalized Gaussian and symmetric-alpha stable) impulsive environment, confirm the admissibility of the proposed equalizers in terms of robustness and steady convergence.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2022.108626</doi><orcidid>https://orcid.org/0000-0002-2621-4969</orcidid><orcidid>https://orcid.org/0000-0003-2652-1923</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2022-12, Vol.201, p.108626, Article 108626
issn 0165-1684
1872-7557
language eng
recordid cdi_hal_primary_oai_HAL_hal_04487050v1
source ScienceDirect Freedom Collection 2022-2024
subjects Adaptive filter
Blind equalization
Engineering Sciences
Generalized Gaussian distribution
Impulsive noise
Maximal-invariance
Signal and Image processing
title Adaptive algorithms for blind channel equalization in impulsive noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20algorithms%20for%20blind%20channel%20equalization%20in%20impulsive%20noise&rft.jtitle=Signal%20processing&rft.au=Abrar,%20Shafayat&rft.date=2022-12&rft.volume=201&rft.spage=108626&rft.pages=108626-&rft.artnum=108626&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2022.108626&rft_dat=%3Celsevier_hal_p%3ES0165168422001669%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-9b4eaebd87a2bcb9aa2619f94fd0cbdd02a68417d5f3f1ea711fd3e5d858bebb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true