Loading…

Simulation and optimization of GaAs1-xPx/Si1-yGey/Ge triple junction solar cells

This paper focuses on studying and simulating a GaAs1-xPx/Si1-yGey/Ge triple-junction solar cell structure. First, the strain and the bandgap energy associated to the SiGe layer have been studied. The optimal germanium concentration is 0.88 with a strain around 0.45%. Then, the phosphor concentratio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Ovonic Research 2024-01, Vol.20 (1), p.75-84
Main Authors: Azzououm, A. B., Aissat, A., Vilcot, J. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper focuses on studying and simulating a GaAs1-xPx/Si1-yGey/Ge triple-junction solar cell structure. First, the strain and the bandgap energy associated to the SiGe layer have been studied. The optimal germanium concentration is 0.88 with a strain around 0.45%. Then, the phosphor concentration effect on the strain and the bandgap energy of the upper layer GaAs1-xPx/Si0.12Ge0.88 has been optimized. At room temperature, the optimal output parameter reach Jsc=34.41mA/cm2 , Voc=1.27V, FF=88.42% and η=38.45% for an absorber thickness of 4.5µm and x=0.47, with a strain that doesn’t exceed 1.5%. This study has enabled us to design a high-efficiency, low cost 3J solar cell.
ISSN:1584-9953
1584-9953
DOI:10.15251/JOR.2024.201.75