Loading…

Component-based reduced basis for parametrized symmetric eigenproblems

Background A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems. Methods Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “ σ -shifted” eigenproblem where the left hand side...

Full description

Saved in:
Bibliographic Details
Published in:Advanced modeling and simulation in engineering sciences 2015-05, Vol.2 (1), p.1-30, Article 7
Main Authors: Vallaghé, Sylvain, Huynh, Phuong, Knezevic, David J, Nguyen, Loi, Patera, Anthony T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3
cites cdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3
container_end_page 30
container_issue 1
container_start_page 1
container_title Advanced modeling and simulation in engineering sciences
container_volume 2
creator Vallaghé, Sylvain
Huynh, Phuong
Knezevic, David J
Nguyen, Loi
Patera, Anthony T
description Background A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems. Methods Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “ σ -shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter σ >0. Assuming that σ = λ n >0, the nth real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “ σ -shifted” eigenproblem for the full system. We then perform a direct search to find the values of σ that yield singular systems, corresponding to the eigenvalues of the original eigenproblem. Results We provide eigenvalue a posteriori error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach. Conclusions We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.
doi_str_mv 10.1186/s40323-015-0021-0
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04514213v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04514213v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpD2DLymA424mdjFVFKVIlFpgtxzmXVE0c2S1S-fU4BCEmpnt3et_p7hFyy-CesVI-xBwEFxRYQQE4o3BBZpwzQVUu1eUffU0WMe4BgEmRMyVnZL3y3eB77I-0NhGbLGBzsqmmro2Z8yEbTDAdHkP7mcbx3H1rm2G7w34Ivj5gF2_IlTOHiIufOidv68fX1YZuX56eV8sttbwEoFJYiQClE6AqwRXWTSk5N9xZbnPDBWukq5RwBZjGmjzdrbByaGxR1c41Yk7upr3v5qCH0HYmnLU3rd4st3qcQV6wEftgycsmrw0-xoDuF2Cgx9z0lJtOuekxNw2J4RMTk7ffYdB7fwp9eukf6Asb-3AJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Component-based reduced basis for parametrized symmetric eigenproblems</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Vallaghé, Sylvain ; Huynh, Phuong ; Knezevic, David J ; Nguyen, Loi ; Patera, Anthony T</creator><creatorcontrib>Vallaghé, Sylvain ; Huynh, Phuong ; Knezevic, David J ; Nguyen, Loi ; Patera, Anthony T</creatorcontrib><description>Background A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems. Methods Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “ σ -shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter σ &gt;0. Assuming that σ = λ n &gt;0, the nth real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “ σ -shifted” eigenproblem for the full system. We then perform a direct search to find the values of σ that yield singular systems, corresponding to the eigenvalues of the original eigenproblem. Results We provide eigenvalue a posteriori error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach. Conclusions We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.</description><identifier>ISSN: 2213-7467</identifier><identifier>EISSN: 2213-7467</identifier><identifier>DOI: 10.1186/s40323-015-0021-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Engineering ; Engineering Sciences ; Research Article ; Theoretical and Applied Mechanics</subject><ispartof>Advanced modeling and simulation in engineering sciences, 2015-05, Vol.2 (1), p.1-30, Article 7</ispartof><rights>Vallaghéet al. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</citedby><cites>FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</cites><orcidid>0000-0002-3063-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04514213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallaghé, Sylvain</creatorcontrib><creatorcontrib>Huynh, Phuong</creatorcontrib><creatorcontrib>Knezevic, David J</creatorcontrib><creatorcontrib>Nguyen, Loi</creatorcontrib><creatorcontrib>Patera, Anthony T</creatorcontrib><title>Component-based reduced basis for parametrized symmetric eigenproblems</title><title>Advanced modeling and simulation in engineering sciences</title><addtitle>Adv. Model. and Simul. in Eng. Sci</addtitle><description>Background A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems. Methods Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “ σ -shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter σ &gt;0. Assuming that σ = λ n &gt;0, the nth real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “ σ -shifted” eigenproblem for the full system. We then perform a direct search to find the values of σ that yield singular systems, corresponding to the eigenvalues of the original eigenproblem. Results We provide eigenvalue a posteriori error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach. Conclusions We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Research Article</subject><subject>Theoretical and Applied Mechanics</subject><issn>2213-7467</issn><issn>2213-7467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EElXpD2DLymA424mdjFVFKVIlFpgtxzmXVE0c2S1S-fU4BCEmpnt3et_p7hFyy-CesVI-xBwEFxRYQQE4o3BBZpwzQVUu1eUffU0WMe4BgEmRMyVnZL3y3eB77I-0NhGbLGBzsqmmro2Z8yEbTDAdHkP7mcbx3H1rm2G7w34Ivj5gF2_IlTOHiIufOidv68fX1YZuX56eV8sttbwEoFJYiQClE6AqwRXWTSk5N9xZbnPDBWukq5RwBZjGmjzdrbByaGxR1c41Yk7upr3v5qCH0HYmnLU3rd4st3qcQV6wEftgycsmrw0-xoDuF2Cgx9z0lJtOuekxNw2J4RMTk7ffYdB7fwp9eukf6Asb-3AJ</recordid><startdate>20150523</startdate><enddate>20150523</enddate><creator>Vallaghé, Sylvain</creator><creator>Huynh, Phuong</creator><creator>Knezevic, David J</creator><creator>Nguyen, Loi</creator><creator>Patera, Anthony T</creator><general>Springer International Publishing</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3063-6910</orcidid></search><sort><creationdate>20150523</creationdate><title>Component-based reduced basis for parametrized symmetric eigenproblems</title><author>Vallaghé, Sylvain ; Huynh, Phuong ; Knezevic, David J ; Nguyen, Loi ; Patera, Anthony T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Research Article</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallaghé, Sylvain</creatorcontrib><creatorcontrib>Huynh, Phuong</creatorcontrib><creatorcontrib>Knezevic, David J</creatorcontrib><creatorcontrib>Nguyen, Loi</creatorcontrib><creatorcontrib>Patera, Anthony T</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced modeling and simulation in engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallaghé, Sylvain</au><au>Huynh, Phuong</au><au>Knezevic, David J</au><au>Nguyen, Loi</au><au>Patera, Anthony T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Component-based reduced basis for parametrized symmetric eigenproblems</atitle><jtitle>Advanced modeling and simulation in engineering sciences</jtitle><stitle>Adv. Model. and Simul. in Eng. Sci</stitle><date>2015-05-23</date><risdate>2015</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><artnum>7</artnum><issn>2213-7467</issn><eissn>2213-7467</eissn><abstract>Background A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems. Methods Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “ σ -shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter σ &gt;0. Assuming that σ = λ n &gt;0, the nth real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “ σ -shifted” eigenproblem for the full system. We then perform a direct search to find the values of σ that yield singular systems, corresponding to the eigenvalues of the original eigenproblem. Results We provide eigenvalue a posteriori error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach. Conclusions We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40323-015-0021-0</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-3063-6910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-7467
ispartof Advanced modeling and simulation in engineering sciences, 2015-05, Vol.2 (1), p.1-30, Article 7
issn 2213-7467
2213-7467
language eng
recordid cdi_hal_primary_oai_HAL_hal_04514213v1
source Springer Nature - SpringerLink Journals - Fully Open Access
subjects Classical and Continuum Physics
Computational Science and Engineering
Engineering
Engineering Sciences
Research Article
Theoretical and Applied Mechanics
title Component-based reduced basis for parametrized symmetric eigenproblems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Component-based%20reduced%20basis%20for%20parametrized%20symmetric%20eigenproblems&rft.jtitle=Advanced%20modeling%20and%20simulation%20in%20engineering%20sciences&rft.au=Vallagh%C3%A9,%20Sylvain&rft.date=2015-05-23&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.artnum=7&rft.issn=2213-7467&rft.eissn=2213-7467&rft_id=info:doi/10.1186/s40323-015-0021-0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04514213v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true