Loading…
Component-based reduced basis for parametrized symmetric eigenproblems
Background A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems. Methods Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “ σ -shifted” eigenproblem where the left hand side...
Saved in:
Published in: | Advanced modeling and simulation in engineering sciences 2015-05, Vol.2 (1), p.1-30, Article 7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3 |
container_end_page | 30 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advanced modeling and simulation in engineering sciences |
container_volume | 2 |
creator | Vallaghé, Sylvain Huynh, Phuong Knezevic, David J Nguyen, Loi Patera, Anthony T |
description | Background
A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems.
Methods
Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “
σ
-shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter
σ
>0. Assuming that
σ
=
λ
n
>0, the
nth
real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “
σ
-shifted” eigenproblem for the full system. We then perform a direct search to find the values of
σ
that yield singular systems, corresponding to the eigenvalues of the original eigenproblem.
Results
We provide eigenvalue
a posteriori
error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach.
Conclusions
We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context. |
doi_str_mv | 10.1186/s40323-015-0021-0 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04514213v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04514213v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpD2DLymA424mdjFVFKVIlFpgtxzmXVE0c2S1S-fU4BCEmpnt3et_p7hFyy-CesVI-xBwEFxRYQQE4o3BBZpwzQVUu1eUffU0WMe4BgEmRMyVnZL3y3eB77I-0NhGbLGBzsqmmro2Z8yEbTDAdHkP7mcbx3H1rm2G7w34Ivj5gF2_IlTOHiIufOidv68fX1YZuX56eV8sttbwEoFJYiQClE6AqwRXWTSk5N9xZbnPDBWukq5RwBZjGmjzdrbByaGxR1c41Yk7upr3v5qCH0HYmnLU3rd4st3qcQV6wEftgycsmrw0-xoDuF2Cgx9z0lJtOuekxNw2J4RMTk7ffYdB7fwp9eukf6Asb-3AJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Component-based reduced basis for parametrized symmetric eigenproblems</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Vallaghé, Sylvain ; Huynh, Phuong ; Knezevic, David J ; Nguyen, Loi ; Patera, Anthony T</creator><creatorcontrib>Vallaghé, Sylvain ; Huynh, Phuong ; Knezevic, David J ; Nguyen, Loi ; Patera, Anthony T</creatorcontrib><description>Background
A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems.
Methods
Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “
σ
-shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter
σ
>0. Assuming that
σ
=
λ
n
>0, the
nth
real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “
σ
-shifted” eigenproblem for the full system. We then perform a direct search to find the values of
σ
that yield singular systems, corresponding to the eigenvalues of the original eigenproblem.
Results
We provide eigenvalue
a posteriori
error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach.
Conclusions
We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.</description><identifier>ISSN: 2213-7467</identifier><identifier>EISSN: 2213-7467</identifier><identifier>DOI: 10.1186/s40323-015-0021-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Continuum Physics ; Computational Science and Engineering ; Engineering ; Engineering Sciences ; Research Article ; Theoretical and Applied Mechanics</subject><ispartof>Advanced modeling and simulation in engineering sciences, 2015-05, Vol.2 (1), p.1-30, Article 7</ispartof><rights>Vallaghéet al. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</citedby><cites>FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</cites><orcidid>0000-0002-3063-6910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04514213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallaghé, Sylvain</creatorcontrib><creatorcontrib>Huynh, Phuong</creatorcontrib><creatorcontrib>Knezevic, David J</creatorcontrib><creatorcontrib>Nguyen, Loi</creatorcontrib><creatorcontrib>Patera, Anthony T</creatorcontrib><title>Component-based reduced basis for parametrized symmetric eigenproblems</title><title>Advanced modeling and simulation in engineering sciences</title><addtitle>Adv. Model. and Simul. in Eng. Sci</addtitle><description>Background
A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems.
Methods
Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “
σ
-shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter
σ
>0. Assuming that
σ
=
λ
n
>0, the
nth
real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “
σ
-shifted” eigenproblem for the full system. We then perform a direct search to find the values of
σ
that yield singular systems, corresponding to the eigenvalues of the original eigenproblem.
Results
We provide eigenvalue
a posteriori
error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach.
Conclusions
We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.</description><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Research Article</subject><subject>Theoretical and Applied Mechanics</subject><issn>2213-7467</issn><issn>2213-7467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EElXpD2DLymA424mdjFVFKVIlFpgtxzmXVE0c2S1S-fU4BCEmpnt3et_p7hFyy-CesVI-xBwEFxRYQQE4o3BBZpwzQVUu1eUffU0WMe4BgEmRMyVnZL3y3eB77I-0NhGbLGBzsqmmro2Z8yEbTDAdHkP7mcbx3H1rm2G7w34Ivj5gF2_IlTOHiIufOidv68fX1YZuX56eV8sttbwEoFJYiQClE6AqwRXWTSk5N9xZbnPDBWukq5RwBZjGmjzdrbByaGxR1c41Yk7upr3v5qCH0HYmnLU3rd4st3qcQV6wEftgycsmrw0-xoDuF2Cgx9z0lJtOuekxNw2J4RMTk7ffYdB7fwp9eukf6Asb-3AJ</recordid><startdate>20150523</startdate><enddate>20150523</enddate><creator>Vallaghé, Sylvain</creator><creator>Huynh, Phuong</creator><creator>Knezevic, David J</creator><creator>Nguyen, Loi</creator><creator>Patera, Anthony T</creator><general>Springer International Publishing</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3063-6910</orcidid></search><sort><creationdate>20150523</creationdate><title>Component-based reduced basis for parametrized symmetric eigenproblems</title><author>Vallaghé, Sylvain ; Huynh, Phuong ; Knezevic, David J ; Nguyen, Loi ; Patera, Anthony T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Research Article</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallaghé, Sylvain</creatorcontrib><creatorcontrib>Huynh, Phuong</creatorcontrib><creatorcontrib>Knezevic, David J</creatorcontrib><creatorcontrib>Nguyen, Loi</creatorcontrib><creatorcontrib>Patera, Anthony T</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced modeling and simulation in engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallaghé, Sylvain</au><au>Huynh, Phuong</au><au>Knezevic, David J</au><au>Nguyen, Loi</au><au>Patera, Anthony T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Component-based reduced basis for parametrized symmetric eigenproblems</atitle><jtitle>Advanced modeling and simulation in engineering sciences</jtitle><stitle>Adv. Model. and Simul. in Eng. Sci</stitle><date>2015-05-23</date><risdate>2015</risdate><volume>2</volume><issue>1</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><artnum>7</artnum><issn>2213-7467</issn><eissn>2213-7467</eissn><abstract>Background
A component-based approach is introduced for fast and flexible solution of parameter-dependent symmetric eigenproblems.
Methods
Considering a generalized eigenproblem with symmetric stiffness and mass operators, we start by introducing a “
σ
-shifted” eigenproblem where the left hand side operator corresponds to an equilibrium between the stiffness operator and a weighted mass operator, with weight-parameter
σ
>0. Assuming that
σ
=
λ
n
>0, the
nth
real positive eigenvalue of the original eigenproblem, then the shifted eigenproblem reduces to the solution of a homogeneous linear problem. In this context, we can apply the static condensation reduced basis element (SCRBE) method, a domain synthesis approach with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archetype subdomains we train RB spaces for a family of linear problems; these linear problems correspond to various equilibriums between the stiffness operator and the weighted mass operator. In the Online stage we assemble instantiated subdomains and perform static condensation to obtain the “
σ
-shifted” eigenproblem for the full system. We then perform a direct search to find the values of
σ
that yield singular systems, corresponding to the eigenvalues of the original eigenproblem.
Results
We provide eigenvalue
a posteriori
error estimators and we present various numerical results to demonstrate the accuracy, flexibility and computational efficiency of our approach.
Conclusions
We are able to obtain large speed and memory improvements compared to a classical Finite Element Method (FEM), making our method very suitable for large models commonly considered in an engineering context.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40323-015-0021-0</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-3063-6910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-7467 |
ispartof | Advanced modeling and simulation in engineering sciences, 2015-05, Vol.2 (1), p.1-30, Article 7 |
issn | 2213-7467 2213-7467 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04514213v1 |
source | Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Classical and Continuum Physics Computational Science and Engineering Engineering Engineering Sciences Research Article Theoretical and Applied Mechanics |
title | Component-based reduced basis for parametrized symmetric eigenproblems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Component-based%20reduced%20basis%20for%20parametrized%20symmetric%20eigenproblems&rft.jtitle=Advanced%20modeling%20and%20simulation%20in%20engineering%20sciences&rft.au=Vallagh%C3%A9,%20Sylvain&rft.date=2015-05-23&rft.volume=2&rft.issue=1&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.artnum=7&rft.issn=2213-7467&rft.eissn=2213-7467&rft_id=info:doi/10.1186/s40323-015-0021-0&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04514213v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2800-63c6e008f3079327ebd8622a2fc2c4a231d6f973f50adca42137e9feac59bffd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |