Loading…

PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosp...

Full description

Saved in:
Bibliographic Details
Published in:The FEBS journal 2009-11, Vol.276 (21), p.6412-6424
Main Authors: Le Guédard, Marina, Bessoule, Jean-Jacques, Boyer, Valérie, Ayciriex, Sophie, Velours, Gisèle, Kulik, Willem, Ejsing, Christer S, Shevchenko, Andrej, Coulon, Denis, Lessire, René, Testet, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193
cites cdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193
container_end_page 6424
container_issue 21
container_start_page 6412
container_title The FEBS journal
container_volume 276
creator Le Guédard, Marina
Bessoule, Jean-Jacques
Boyer, Valérie
Ayciriex, Sophie
Velours, Gisèle
Kulik, Willem
Ejsing, Christer S
Shevchenko, Andrej
Coulon, Denis
Lessire, René
Testet, Eric
description In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.
doi_str_mv 10.1111/j.1742-4658.2009.07355.x
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04535112v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67686796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwF8DigMRhg8ef8QWpVC2ttBJISyVuluM4xEs2XuwsdP89DlktEpfFF488z7yeGb1FgQCXkM-7dQmSkQUTvCoJxqrEknJePjwqzo-Jx8eYfT0rnqW0xphyptTT4gyUVAJEdV58_7y6A-QTii5tw5B83TvUhojGzqE0OhO9Rcb6Brkhh93GDWPOmXGqsZ2Jxo4u-jRmLLRo24W0zVnf7Hs_hOTH0CM_oL0zaXxePGlNn9yLw31R3N9cf7m6XSw_fby7ulwuLFeEL0hNsYPaSFlLIXidW2VV1QinZOsYMG4brix1tuZO0qbmvBGc5VCBUBQUvSjezrqd6fU2-o2Jex2M17eXSz29YcYpByA_IbNvZnYbw4-dS6Pe-GRd35vBhV3SQopK5A5OggQIgfn3k2DePOYZfP0PuA67OOTNaILZJMdOQ6BgGqKaIRtDStG1x6kB68kweq0nL-jJF3oyjP5jGP2QS18e9Hf1xjV_Cw8OycD7Gfjle7f_b2F9c_1hNYVZ4NUs0JqgzbfsFX2_IhgozvIVgKS_ASmf1gM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204121911</pqid></control><display><type>article</type><title>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Le Guédard, Marina ; Bessoule, Jean-Jacques ; Boyer, Valérie ; Ayciriex, Sophie ; Velours, Gisèle ; Kulik, Willem ; Ejsing, Christer S ; Shevchenko, Andrej ; Coulon, Denis ; Lessire, René ; Testet, Eric</creator><creatorcontrib>Le Guédard, Marina ; Bessoule, Jean-Jacques ; Boyer, Valérie ; Ayciriex, Sophie ; Velours, Gisèle ; Kulik, Willem ; Ejsing, Christer S ; Shevchenko, Andrej ; Coulon, Denis ; Lessire, René ; Testet, Eric</creatorcontrib><description>In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2009.07355.x</identifier><identifier>PMID: 19796168</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Acyltransferases - metabolism ; Biochemistry ; Cellular biology ; Fatty acids ; glycerolipid acyltransferase ; Life Sciences ; Microsomes - chemistry ; phosphatidylinositol remodeling ; Phosphatidylinositols - analysis ; Phosphatidylinositols - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; stearic acid ; Stearic Acids - analysis ; YBR042C ; Yeast</subject><ispartof>The FEBS journal, 2009-11, Vol.276 (21), p.6412-6424</ispartof><rights>2009 The Authors Journal compilation © 2009 FEBS</rights><rights>Journal compilation © 2009 Federation of European Biochemical Societies</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</citedby><cites>FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</cites><orcidid>0000-0002-5079-1109 ; 0000-0001-7950-1489 ; 0000-0002-3943-1970 ; 0000-0002-9797-7584 ; 0000-0003-4813-5900 ; 0000-0002-3216-5761 ; 0000-0003-4963-0276 ; 0000-0003-4984-1890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19796168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04535112$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Guédard, Marina</creatorcontrib><creatorcontrib>Bessoule, Jean-Jacques</creatorcontrib><creatorcontrib>Boyer, Valérie</creatorcontrib><creatorcontrib>Ayciriex, Sophie</creatorcontrib><creatorcontrib>Velours, Gisèle</creatorcontrib><creatorcontrib>Kulik, Willem</creatorcontrib><creatorcontrib>Ejsing, Christer S</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Coulon, Denis</creatorcontrib><creatorcontrib>Lessire, René</creatorcontrib><creatorcontrib>Testet, Eric</creatorcontrib><title>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.</description><subject>Acyltransferases - metabolism</subject><subject>Biochemistry</subject><subject>Cellular biology</subject><subject>Fatty acids</subject><subject>glycerolipid acyltransferase</subject><subject>Life Sciences</subject><subject>Microsomes - chemistry</subject><subject>phosphatidylinositol remodeling</subject><subject>Phosphatidylinositols - analysis</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>stearic acid</subject><subject>Stearic Acids - analysis</subject><subject>YBR042C</subject><subject>Yeast</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhiMEoqXwF8DigMRhg8ef8QWpVC2ttBJISyVuluM4xEs2XuwsdP89DlktEpfFF488z7yeGb1FgQCXkM-7dQmSkQUTvCoJxqrEknJePjwqzo-Jx8eYfT0rnqW0xphyptTT4gyUVAJEdV58_7y6A-QTii5tw5B83TvUhojGzqE0OhO9Rcb6Brkhh93GDWPOmXGqsZ2Jxo4u-jRmLLRo24W0zVnf7Hs_hOTH0CM_oL0zaXxePGlNn9yLw31R3N9cf7m6XSw_fby7ulwuLFeEL0hNsYPaSFlLIXidW2VV1QinZOsYMG4brix1tuZO0qbmvBGc5VCBUBQUvSjezrqd6fU2-o2Jex2M17eXSz29YcYpByA_IbNvZnYbw4-dS6Pe-GRd35vBhV3SQopK5A5OggQIgfn3k2DePOYZfP0PuA67OOTNaILZJMdOQ6BgGqKaIRtDStG1x6kB68kweq0nL-jJF3oyjP5jGP2QS18e9Hf1xjV_Cw8OycD7Gfjle7f_b2F9c_1hNYVZ4NUs0JqgzbfsFX2_IhgozvIVgKS_ASmf1gM</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Le Guédard, Marina</creator><creator>Bessoule, Jean-Jacques</creator><creator>Boyer, Valérie</creator><creator>Ayciriex, Sophie</creator><creator>Velours, Gisèle</creator><creator>Kulik, Willem</creator><creator>Ejsing, Christer S</creator><creator>Shevchenko, Andrej</creator><creator>Coulon, Denis</creator><creator>Lessire, René</creator><creator>Testet, Eric</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5079-1109</orcidid><orcidid>https://orcid.org/0000-0001-7950-1489</orcidid><orcidid>https://orcid.org/0000-0002-3943-1970</orcidid><orcidid>https://orcid.org/0000-0002-9797-7584</orcidid><orcidid>https://orcid.org/0000-0003-4813-5900</orcidid><orcidid>https://orcid.org/0000-0002-3216-5761</orcidid><orcidid>https://orcid.org/0000-0003-4963-0276</orcidid><orcidid>https://orcid.org/0000-0003-4984-1890</orcidid></search><sort><creationdate>200911</creationdate><title>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</title><author>Le Guédard, Marina ; Bessoule, Jean-Jacques ; Boyer, Valérie ; Ayciriex, Sophie ; Velours, Gisèle ; Kulik, Willem ; Ejsing, Christer S ; Shevchenko, Andrej ; Coulon, Denis ; Lessire, René ; Testet, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acyltransferases - metabolism</topic><topic>Biochemistry</topic><topic>Cellular biology</topic><topic>Fatty acids</topic><topic>glycerolipid acyltransferase</topic><topic>Life Sciences</topic><topic>Microsomes - chemistry</topic><topic>phosphatidylinositol remodeling</topic><topic>Phosphatidylinositols - analysis</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>stearic acid</topic><topic>Stearic Acids - analysis</topic><topic>YBR042C</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Guédard, Marina</creatorcontrib><creatorcontrib>Bessoule, Jean-Jacques</creatorcontrib><creatorcontrib>Boyer, Valérie</creatorcontrib><creatorcontrib>Ayciriex, Sophie</creatorcontrib><creatorcontrib>Velours, Gisèle</creatorcontrib><creatorcontrib>Kulik, Willem</creatorcontrib><creatorcontrib>Ejsing, Christer S</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Coulon, Denis</creatorcontrib><creatorcontrib>Lessire, René</creatorcontrib><creatorcontrib>Testet, Eric</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Guédard, Marina</au><au>Bessoule, Jean-Jacques</au><au>Boyer, Valérie</au><au>Ayciriex, Sophie</au><au>Velours, Gisèle</au><au>Kulik, Willem</au><au>Ejsing, Christer S</au><au>Shevchenko, Andrej</au><au>Coulon, Denis</au><au>Lessire, René</au><au>Testet, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2009-11</date><risdate>2009</risdate><volume>276</volume><issue>21</issue><spage>6412</spage><epage>6424</epage><pages>6412-6424</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19796168</pmid><doi>10.1111/j.1742-4658.2009.07355.x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5079-1109</orcidid><orcidid>https://orcid.org/0000-0001-7950-1489</orcidid><orcidid>https://orcid.org/0000-0002-3943-1970</orcidid><orcidid>https://orcid.org/0000-0002-9797-7584</orcidid><orcidid>https://orcid.org/0000-0003-4813-5900</orcidid><orcidid>https://orcid.org/0000-0002-3216-5761</orcidid><orcidid>https://orcid.org/0000-0003-4963-0276</orcidid><orcidid>https://orcid.org/0000-0003-4984-1890</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2009-11, Vol.276 (21), p.6412-6424
issn 1742-464X
1742-4658
language eng
recordid cdi_hal_primary_oai_HAL_hal_04535112v1
source Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry
subjects Acyltransferases - metabolism
Biochemistry
Cellular biology
Fatty acids
glycerolipid acyltransferase
Life Sciences
Microsomes - chemistry
phosphatidylinositol remodeling
Phosphatidylinositols - analysis
Phosphatidylinositols - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - physiology
stearic acid
Stearic Acids - analysis
YBR042C
Yeast
title PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSI1%20is%20responsible%20for%20the%20stearic%20acid%20enrichment%20that%20is%20characteristic%20of%20phosphatidylinositol%20in%20yeast&rft.jtitle=The%20FEBS%20journal&rft.au=Le%20Gu%C3%A9dard,%20Marina&rft.date=2009-11&rft.volume=276&rft.issue=21&rft.spage=6412&rft.epage=6424&rft.pages=6412-6424&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2009.07355.x&rft_dat=%3Cproquest_hal_p%3E67686796%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204121911&rft_id=info:pmid/19796168&rfr_iscdi=true