Loading…
PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast
In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosp...
Saved in:
Published in: | The FEBS journal 2009-11, Vol.276 (21), p.6412-6424 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193 |
---|---|
cites | cdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193 |
container_end_page | 6424 |
container_issue | 21 |
container_start_page | 6412 |
container_title | The FEBS journal |
container_volume | 276 |
creator | Le Guédard, Marina Bessoule, Jean-Jacques Boyer, Valérie Ayciriex, Sophie Velours, Gisèle Kulik, Willem Ejsing, Christer S Shevchenko, Andrej Coulon, Denis Lessire, René Testet, Eric |
description | In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol. |
doi_str_mv | 10.1111/j.1742-4658.2009.07355.x |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04535112v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67686796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwF8DigMRhg8ef8QWpVC2ttBJISyVuluM4xEs2XuwsdP89DlktEpfFF488z7yeGb1FgQCXkM-7dQmSkQUTvCoJxqrEknJePjwqzo-Jx8eYfT0rnqW0xphyptTT4gyUVAJEdV58_7y6A-QTii5tw5B83TvUhojGzqE0OhO9Rcb6Brkhh93GDWPOmXGqsZ2Jxo4u-jRmLLRo24W0zVnf7Hs_hOTH0CM_oL0zaXxePGlNn9yLw31R3N9cf7m6XSw_fby7ulwuLFeEL0hNsYPaSFlLIXidW2VV1QinZOsYMG4brix1tuZO0qbmvBGc5VCBUBQUvSjezrqd6fU2-o2Jex2M17eXSz29YcYpByA_IbNvZnYbw4-dS6Pe-GRd35vBhV3SQopK5A5OggQIgfn3k2DePOYZfP0PuA67OOTNaILZJMdOQ6BgGqKaIRtDStG1x6kB68kweq0nL-jJF3oyjP5jGP2QS18e9Hf1xjV_Cw8OycD7Gfjle7f_b2F9c_1hNYVZ4NUs0JqgzbfsFX2_IhgozvIVgKS_ASmf1gM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204121911</pqid></control><display><type>article</type><title>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Le Guédard, Marina ; Bessoule, Jean-Jacques ; Boyer, Valérie ; Ayciriex, Sophie ; Velours, Gisèle ; Kulik, Willem ; Ejsing, Christer S ; Shevchenko, Andrej ; Coulon, Denis ; Lessire, René ; Testet, Eric</creator><creatorcontrib>Le Guédard, Marina ; Bessoule, Jean-Jacques ; Boyer, Valérie ; Ayciriex, Sophie ; Velours, Gisèle ; Kulik, Willem ; Ejsing, Christer S ; Shevchenko, Andrej ; Coulon, Denis ; Lessire, René ; Testet, Eric</creatorcontrib><description>In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2009.07355.x</identifier><identifier>PMID: 19796168</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Acyltransferases - metabolism ; Biochemistry ; Cellular biology ; Fatty acids ; glycerolipid acyltransferase ; Life Sciences ; Microsomes - chemistry ; phosphatidylinositol remodeling ; Phosphatidylinositols - analysis ; Phosphatidylinositols - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - physiology ; stearic acid ; Stearic Acids - analysis ; YBR042C ; Yeast</subject><ispartof>The FEBS journal, 2009-11, Vol.276 (21), p.6412-6424</ispartof><rights>2009 The Authors Journal compilation © 2009 FEBS</rights><rights>Journal compilation © 2009 Federation of European Biochemical Societies</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</citedby><cites>FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</cites><orcidid>0000-0002-5079-1109 ; 0000-0001-7950-1489 ; 0000-0002-3943-1970 ; 0000-0002-9797-7584 ; 0000-0003-4813-5900 ; 0000-0002-3216-5761 ; 0000-0003-4963-0276 ; 0000-0003-4984-1890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19796168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04535112$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Guédard, Marina</creatorcontrib><creatorcontrib>Bessoule, Jean-Jacques</creatorcontrib><creatorcontrib>Boyer, Valérie</creatorcontrib><creatorcontrib>Ayciriex, Sophie</creatorcontrib><creatorcontrib>Velours, Gisèle</creatorcontrib><creatorcontrib>Kulik, Willem</creatorcontrib><creatorcontrib>Ejsing, Christer S</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Coulon, Denis</creatorcontrib><creatorcontrib>Lessire, René</creatorcontrib><creatorcontrib>Testet, Eric</creatorcontrib><title>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.</description><subject>Acyltransferases - metabolism</subject><subject>Biochemistry</subject><subject>Cellular biology</subject><subject>Fatty acids</subject><subject>glycerolipid acyltransferase</subject><subject>Life Sciences</subject><subject>Microsomes - chemistry</subject><subject>phosphatidylinositol remodeling</subject><subject>Phosphatidylinositols - analysis</subject><subject>Phosphatidylinositols - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>stearic acid</subject><subject>Stearic Acids - analysis</subject><subject>YBR042C</subject><subject>Yeast</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhiMEoqXwF8DigMRhg8ef8QWpVC2ttBJISyVuluM4xEs2XuwsdP89DlktEpfFF488z7yeGb1FgQCXkM-7dQmSkQUTvCoJxqrEknJePjwqzo-Jx8eYfT0rnqW0xphyptTT4gyUVAJEdV58_7y6A-QTii5tw5B83TvUhojGzqE0OhO9Rcb6Brkhh93GDWPOmXGqsZ2Jxo4u-jRmLLRo24W0zVnf7Hs_hOTH0CM_oL0zaXxePGlNn9yLw31R3N9cf7m6XSw_fby7ulwuLFeEL0hNsYPaSFlLIXidW2VV1QinZOsYMG4brix1tuZO0qbmvBGc5VCBUBQUvSjezrqd6fU2-o2Jex2M17eXSz29YcYpByA_IbNvZnYbw4-dS6Pe-GRd35vBhV3SQopK5A5OggQIgfn3k2DePOYZfP0PuA67OOTNaILZJMdOQ6BgGqKaIRtDStG1x6kB68kweq0nL-jJF3oyjP5jGP2QS18e9Hf1xjV_Cw8OycD7Gfjle7f_b2F9c_1hNYVZ4NUs0JqgzbfsFX2_IhgozvIVgKS_ASmf1gM</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Le Guédard, Marina</creator><creator>Bessoule, Jean-Jacques</creator><creator>Boyer, Valérie</creator><creator>Ayciriex, Sophie</creator><creator>Velours, Gisèle</creator><creator>Kulik, Willem</creator><creator>Ejsing, Christer S</creator><creator>Shevchenko, Andrej</creator><creator>Coulon, Denis</creator><creator>Lessire, René</creator><creator>Testet, Eric</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5079-1109</orcidid><orcidid>https://orcid.org/0000-0001-7950-1489</orcidid><orcidid>https://orcid.org/0000-0002-3943-1970</orcidid><orcidid>https://orcid.org/0000-0002-9797-7584</orcidid><orcidid>https://orcid.org/0000-0003-4813-5900</orcidid><orcidid>https://orcid.org/0000-0002-3216-5761</orcidid><orcidid>https://orcid.org/0000-0003-4963-0276</orcidid><orcidid>https://orcid.org/0000-0003-4984-1890</orcidid></search><sort><creationdate>200911</creationdate><title>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</title><author>Le Guédard, Marina ; Bessoule, Jean-Jacques ; Boyer, Valérie ; Ayciriex, Sophie ; Velours, Gisèle ; Kulik, Willem ; Ejsing, Christer S ; Shevchenko, Andrej ; Coulon, Denis ; Lessire, René ; Testet, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acyltransferases - metabolism</topic><topic>Biochemistry</topic><topic>Cellular biology</topic><topic>Fatty acids</topic><topic>glycerolipid acyltransferase</topic><topic>Life Sciences</topic><topic>Microsomes - chemistry</topic><topic>phosphatidylinositol remodeling</topic><topic>Phosphatidylinositols - analysis</topic><topic>Phosphatidylinositols - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>stearic acid</topic><topic>Stearic Acids - analysis</topic><topic>YBR042C</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Guédard, Marina</creatorcontrib><creatorcontrib>Bessoule, Jean-Jacques</creatorcontrib><creatorcontrib>Boyer, Valérie</creatorcontrib><creatorcontrib>Ayciriex, Sophie</creatorcontrib><creatorcontrib>Velours, Gisèle</creatorcontrib><creatorcontrib>Kulik, Willem</creatorcontrib><creatorcontrib>Ejsing, Christer S</creatorcontrib><creatorcontrib>Shevchenko, Andrej</creatorcontrib><creatorcontrib>Coulon, Denis</creatorcontrib><creatorcontrib>Lessire, René</creatorcontrib><creatorcontrib>Testet, Eric</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Guédard, Marina</au><au>Bessoule, Jean-Jacques</au><au>Boyer, Valérie</au><au>Ayciriex, Sophie</au><au>Velours, Gisèle</au><au>Kulik, Willem</au><au>Ejsing, Christer S</au><au>Shevchenko, Andrej</au><au>Coulon, Denis</au><au>Lessire, René</au><au>Testet, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2009-11</date><risdate>2009</risdate><volume>276</volume><issue>21</issue><spage>6412</spage><epage>6424</epage><pages>6412-6424</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Δ lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Δ cells, microsomal membranes isolated from psi1Δ cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Δ cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19796168</pmid><doi>10.1111/j.1742-4658.2009.07355.x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5079-1109</orcidid><orcidid>https://orcid.org/0000-0001-7950-1489</orcidid><orcidid>https://orcid.org/0000-0002-3943-1970</orcidid><orcidid>https://orcid.org/0000-0002-9797-7584</orcidid><orcidid>https://orcid.org/0000-0003-4813-5900</orcidid><orcidid>https://orcid.org/0000-0002-3216-5761</orcidid><orcidid>https://orcid.org/0000-0003-4963-0276</orcidid><orcidid>https://orcid.org/0000-0003-4984-1890</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2009-11, Vol.276 (21), p.6412-6424 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04535112v1 |
source | Wiley-Blackwell Read & Publish Collection; Free Full-Text Journals in Chemistry |
subjects | Acyltransferases - metabolism Biochemistry Cellular biology Fatty acids glycerolipid acyltransferase Life Sciences Microsomes - chemistry phosphatidylinositol remodeling Phosphatidylinositols - analysis Phosphatidylinositols - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - physiology stearic acid Stearic Acids - analysis YBR042C Yeast |
title | PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSI1%20is%20responsible%20for%20the%20stearic%20acid%20enrichment%20that%20is%20characteristic%20of%20phosphatidylinositol%20in%20yeast&rft.jtitle=The%20FEBS%20journal&rft.au=Le%20Gu%C3%A9dard,%20Marina&rft.date=2009-11&rft.volume=276&rft.issue=21&rft.spage=6412&rft.epage=6424&rft.pages=6412-6424&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2009.07355.x&rft_dat=%3Cproquest_hal_p%3E67686796%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5925-2b30e1ba77b7665b796488d6e97fe4145cd59c3ecb5e73db55d654e7391693193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204121911&rft_id=info:pmid/19796168&rfr_iscdi=true |