Loading…
FINITE SUMS INVOLVING TRIGONOMETRIC FUNCTIONS AND SPECIAL POLYNOMIALS: ANALYSIS OF GENERATING FUNCTIONS AND p-ADIC INTEGRALS
By using trigonometric and generating functions, some formulas and relations involving sums of powers of consecutive positive integers and certain combinatorial sums are derived. By applying the derivative operator to some certain families of special functions and finite sums involving trigonometric...
Saved in:
Published in: | Applicable analysis and discrete mathematics 2024-01, Vol.18 (2), p.452-476 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 476 |
container_issue | 2 |
container_start_page | 452 |
container_title | Applicable analysis and discrete mathematics |
container_volume | 18 |
creator | Kilar, Neslihan Bayad, Abdelmejid Simsek, Yilmaz |
description | By using trigonometric and generating functions, some formulas and relations involving sums of powers of consecutive positive integers and certain combinatorial sums are derived. By applying the derivative operator to some certain families of special functions and finite sums involving trigonometric functions, many novel relations related to the special numbers and polynomials are obtained. Moreover, by applying p-adic integrals to these finite sums, some p-adic integral representations of trigonometric functions are found. |
doi_str_mv | 10.2298/AADMxxxxxxxx |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04535748v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27339433</jstor_id><sourcerecordid>27339433</sourcerecordid><originalsourceid>FETCH-LOGICAL-h563-23310c14dea0c1d4d94bbef30afc22f4ed60babb74e343d899547427df50d0d43</originalsourceid><addsrcrecordid>eNo9jEFLw0AUhBdRsFZvXoW9eoi-7HubZI8hTdqFdFNMWvQUNt2EtlQqjYj-eyMtzuUbho9h7N6HJyFU9BzHk_n3ORdsJAgCzwd4vWQjn6TwogDhmt30_Q5ARlKpEUszbXSV8nI5L7k2qyJfaTPl1YueFqaYp0NJeLY0SaULU_LYTHi5SBMd53xR5G-DMtTyll11dt-3d2eOWZWlVTLz8mKqkzj3NjJATyD6sPbJtXaAI6eoadoOwXZrITpqXQCNbZqQWiR0kVKSQhKh6yQ4cIRj9ni63dh9_XHcvtvjT32w23oW5_XfBiRRhhR9-YP7cHJ3_efh-G-LEFERIv4CMslTrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FINITE SUMS INVOLVING TRIGONOMETRIC FUNCTIONS AND SPECIAL POLYNOMIALS: ANALYSIS OF GENERATING FUNCTIONS AND p-ADIC INTEGRALS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kilar, Neslihan ; Bayad, Abdelmejid ; Simsek, Yilmaz</creator><creatorcontrib>Kilar, Neslihan ; Bayad, Abdelmejid ; Simsek, Yilmaz</creatorcontrib><description>By using trigonometric and generating functions, some formulas and relations involving sums of powers of consecutive positive integers and certain combinatorial sums are derived. By applying the derivative operator to some certain families of special functions and finite sums involving trigonometric functions, many novel relations related to the special numbers and polynomials are obtained. Moreover, by applying p-adic integrals to these finite sums, some p-adic integral representations of trigonometric functions are found.</description><identifier>ISSN: 1452-8630</identifier><identifier>EISSN: 2406-100X</identifier><identifier>DOI: 10.2298/AADMxxxxxxxx</identifier><language>eng</language><publisher>University of Belgrade, Serbia</publisher><subject>Mathematics</subject><ispartof>Applicable analysis and discrete mathematics, 2024-01, Vol.18 (2), p.452-476</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8003-335X ; 0000-0002-0867-8305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27339433$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27339433$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04535748$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kilar, Neslihan</creatorcontrib><creatorcontrib>Bayad, Abdelmejid</creatorcontrib><creatorcontrib>Simsek, Yilmaz</creatorcontrib><title>FINITE SUMS INVOLVING TRIGONOMETRIC FUNCTIONS AND SPECIAL POLYNOMIALS: ANALYSIS OF GENERATING FUNCTIONS AND p-ADIC INTEGRALS</title><title>Applicable analysis and discrete mathematics</title><description>By using trigonometric and generating functions, some formulas and relations involving sums of powers of consecutive positive integers and certain combinatorial sums are derived. By applying the derivative operator to some certain families of special functions and finite sums involving trigonometric functions, many novel relations related to the special numbers and polynomials are obtained. Moreover, by applying p-adic integrals to these finite sums, some p-adic integral representations of trigonometric functions are found.</description><subject>Mathematics</subject><issn>1452-8630</issn><issn>2406-100X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9jEFLw0AUhBdRsFZvXoW9eoi-7HubZI8hTdqFdFNMWvQUNt2EtlQqjYj-eyMtzuUbho9h7N6HJyFU9BzHk_n3ORdsJAgCzwd4vWQjn6TwogDhmt30_Q5ARlKpEUszbXSV8nI5L7k2qyJfaTPl1YueFqaYp0NJeLY0SaULU_LYTHi5SBMd53xR5G-DMtTyll11dt-3d2eOWZWlVTLz8mKqkzj3NjJATyD6sPbJtXaAI6eoadoOwXZrITpqXQCNbZqQWiR0kVKSQhKh6yQ4cIRj9ni63dh9_XHcvtvjT32w23oW5_XfBiRRhhR9-YP7cHJ3_efh-G-LEFERIv4CMslTrQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kilar, Neslihan</creator><creator>Bayad, Abdelmejid</creator><creator>Simsek, Yilmaz</creator><general>University of Belgrade, Serbia</general><general>Department of Applied Mathematics, University of Belgrade</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8003-335X</orcidid><orcidid>https://orcid.org/0000-0002-0867-8305</orcidid></search><sort><creationdate>20240101</creationdate><title>FINITE SUMS INVOLVING TRIGONOMETRIC FUNCTIONS AND SPECIAL POLYNOMIALS</title><author>Kilar, Neslihan ; Bayad, Abdelmejid ; Simsek, Yilmaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h563-23310c14dea0c1d4d94bbef30afc22f4ed60babb74e343d899547427df50d0d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kilar, Neslihan</creatorcontrib><creatorcontrib>Bayad, Abdelmejid</creatorcontrib><creatorcontrib>Simsek, Yilmaz</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applicable analysis and discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kilar, Neslihan</au><au>Bayad, Abdelmejid</au><au>Simsek, Yilmaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINITE SUMS INVOLVING TRIGONOMETRIC FUNCTIONS AND SPECIAL POLYNOMIALS: ANALYSIS OF GENERATING FUNCTIONS AND p-ADIC INTEGRALS</atitle><jtitle>Applicable analysis and discrete mathematics</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>452</spage><epage>476</epage><pages>452-476</pages><issn>1452-8630</issn><eissn>2406-100X</eissn><abstract>By using trigonometric and generating functions, some formulas and relations involving sums of powers of consecutive positive integers and certain combinatorial sums are derived. By applying the derivative operator to some certain families of special functions and finite sums involving trigonometric functions, many novel relations related to the special numbers and polynomials are obtained. Moreover, by applying p-adic integrals to these finite sums, some p-adic integral representations of trigonometric functions are found.</abstract><pub>University of Belgrade, Serbia</pub><doi>10.2298/AADMxxxxxxxx</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8003-335X</orcidid><orcidid>https://orcid.org/0000-0002-0867-8305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1452-8630 |
ispartof | Applicable analysis and discrete mathematics, 2024-01, Vol.18 (2), p.452-476 |
issn | 1452-8630 2406-100X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04535748v1 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Mathematics |
title | FINITE SUMS INVOLVING TRIGONOMETRIC FUNCTIONS AND SPECIAL POLYNOMIALS: ANALYSIS OF GENERATING FUNCTIONS AND p-ADIC INTEGRALS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINITE%20SUMS%20INVOLVING%20TRIGONOMETRIC%20FUNCTIONS%20AND%20SPECIAL%20POLYNOMIALS:%20ANALYSIS%20OF%20GENERATING%20FUNCTIONS%20AND%20p-ADIC%20INTEGRALS&rft.jtitle=Applicable%20analysis%20and%20discrete%20mathematics&rft.au=Kilar,%20Neslihan&rft.date=2024-01-01&rft.volume=18&rft.issue=2&rft.spage=452&rft.epage=476&rft.pages=452-476&rft.issn=1452-8630&rft.eissn=2406-100X&rft_id=info:doi/10.2298/AADMxxxxxxxx&rft_dat=%3Cjstor_hal_p%3E27339433%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h563-23310c14dea0c1d4d94bbef30afc22f4ed60babb74e343d899547427df50d0d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27339433&rfr_iscdi=true |