Loading…
Bi-objective load balancing multiple allocation hub location: a compromise programming approach
In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both...
Saved in:
Published in: | Annals of operations research 2021-01, Vol.296 (1-2), p.363-406 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193 |
container_end_page | 406 |
container_issue | 1-2 |
container_start_page | 363 |
container_title | Annals of operations research |
container_volume | 296 |
creator | Monemi, Rahimeh Neamatian Gelareh, Shahin Nagih, Anass Jones, Dylan |
description | In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances. |
doi_str_mv | 10.1007/s10479-019-03421-w |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04538558v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650693608</galeid><sourcerecordid>A650693608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0f6AnQU-FOh1Zki33tg1tU1joJTmLkSx5tdjW1rIT8u-rrfuRQAhCGmZ43tEMLyFvGZwzgPpjYiDqpgCWLxclK26fkQ2TdVk0nKvnZAOlFIXkHF6SVykdAIAxJTdEfw5FNAdn53DjaB-xpQZ7HG0YOzos_RyOvaPY99HiHOJI94uhf5NPFKmNw3GKQ0iO5thNOAwnKR5zhnb_mrzw2Cf35k88I9dfv1xdXBa7H9--X2x3hZXA5qJW1pS1bz0IwZQQtWyVL43zwqKxVlTKS1-ia8E1FowxDiuP3gon0TPW8DPyfu27x14fpzDgdKcjBn253elTDYTkSkp1wzL7bmXziD8Xl2Z9iMs05vF0mX8uoZLqHtVh73QYfZwntHlRq7eVhKrhFahMnT9C5dO6Idg4Oh9y_YHgwz2BWVIYXcpPCt1-Th0uKT3EyxW3U0xpcv7fcgz0yXq9Wq-z9fq39fo2i_gqShkeOzf9X_AJ1S-vMbHt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475206581</pqid></control><display><type>article</type><title>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Monemi, Rahimeh Neamatian ; Gelareh, Shahin ; Nagih, Anass ; Jones, Dylan</creator><creatorcontrib>Monemi, Rahimeh Neamatian ; Gelareh, Shahin ; Nagih, Anass ; Jones, Dylan</creatorcontrib><description>In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-019-03421-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Business and Management ; Combinatorics ; Computer Science ; Linear programming ; Mathematical optimization ; Mathematics ; Methods ; Mixed integer ; Nodes ; Nonlinear programming ; Operating costs ; Operations research ; Operations Research/Decision Theory ; Resource allocation ; S.i.: Mopgp 2017 ; Spatial distribution ; Theory of Computation ; Transportation</subject><ispartof>Annals of operations research, 2021-01, Vol.296 (1-2), p.363-406</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</citedby><cites>FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</cites><orcidid>0000-0001-5192-5247 ; 0000-0002-6606-9698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2475206581/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2475206581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04538558$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Monemi, Rahimeh Neamatian</creatorcontrib><creatorcontrib>Gelareh, Shahin</creatorcontrib><creatorcontrib>Nagih, Anass</creatorcontrib><creatorcontrib>Jones, Dylan</creatorcontrib><title>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances.</description><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Linear programming</subject><subject>Mathematical optimization</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Mixed integer</subject><subject>Nodes</subject><subject>Nonlinear programming</subject><subject>Operating costs</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Resource allocation</subject><subject>S.i.: Mopgp 2017</subject><subject>Spatial distribution</subject><subject>Theory of Computation</subject><subject>Transportation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU1r3DAQhkVpodu0f6AnQU-FOh1Zki33tg1tU1joJTmLkSx5tdjW1rIT8u-rrfuRQAhCGmZ43tEMLyFvGZwzgPpjYiDqpgCWLxclK26fkQ2TdVk0nKvnZAOlFIXkHF6SVykdAIAxJTdEfw5FNAdn53DjaB-xpQZ7HG0YOzos_RyOvaPY99HiHOJI94uhf5NPFKmNw3GKQ0iO5thNOAwnKR5zhnb_mrzw2Cf35k88I9dfv1xdXBa7H9--X2x3hZXA5qJW1pS1bz0IwZQQtWyVL43zwqKxVlTKS1-ia8E1FowxDiuP3gon0TPW8DPyfu27x14fpzDgdKcjBn253elTDYTkSkp1wzL7bmXziD8Xl2Z9iMs05vF0mX8uoZLqHtVh73QYfZwntHlRq7eVhKrhFahMnT9C5dO6Idg4Oh9y_YHgwz2BWVIYXcpPCt1-Th0uKT3EyxW3U0xpcv7fcgz0yXq9Wq-z9fq39fo2i_gqShkeOzf9X_AJ1S-vMbHt</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Monemi, Rahimeh Neamatian</creator><creator>Gelareh, Shahin</creator><creator>Nagih, Anass</creator><creator>Jones, Dylan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5192-5247</orcidid><orcidid>https://orcid.org/0000-0002-6606-9698</orcidid></search><sort><creationdate>20210101</creationdate><title>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</title><author>Monemi, Rahimeh Neamatian ; Gelareh, Shahin ; Nagih, Anass ; Jones, Dylan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Linear programming</topic><topic>Mathematical optimization</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Mixed integer</topic><topic>Nodes</topic><topic>Nonlinear programming</topic><topic>Operating costs</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Resource allocation</topic><topic>S.i.: Mopgp 2017</topic><topic>Spatial distribution</topic><topic>Theory of Computation</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monemi, Rahimeh Neamatian</creatorcontrib><creatorcontrib>Gelareh, Shahin</creatorcontrib><creatorcontrib>Nagih, Anass</creatorcontrib><creatorcontrib>Jones, Dylan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monemi, Rahimeh Neamatian</au><au>Gelareh, Shahin</au><au>Nagih, Anass</au><au>Jones, Dylan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><issue>1-2</issue><spage>363</spage><epage>406</epage><pages>363-406</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-019-03421-w</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0001-5192-5247</orcidid><orcidid>https://orcid.org/0000-0002-6606-9698</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2021-01, Vol.296 (1-2), p.363-406 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_04538558v1 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM global; Springer Nature |
subjects | Algorithms Business and Management Combinatorics Computer Science Linear programming Mathematical optimization Mathematics Methods Mixed integer Nodes Nonlinear programming Operating costs Operations research Operations Research/Decision Theory Resource allocation S.i.: Mopgp 2017 Spatial distribution Theory of Computation Transportation |
title | Bi-objective load balancing multiple allocation hub location: a compromise programming approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-objective%20load%20balancing%20multiple%20allocation%20hub%20location:%20a%20compromise%20programming%20approach&rft.jtitle=Annals%20of%20operations%20research&rft.au=Monemi,%20Rahimeh%20Neamatian&rft.date=2021-01-01&rft.volume=296&rft.issue=1-2&rft.spage=363&rft.epage=406&rft.pages=363-406&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-019-03421-w&rft_dat=%3Cgale_hal_p%3EA650693608%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475206581&rft_id=info:pmid/&rft_galeid=A650693608&rfr_iscdi=true |