Loading…

Bi-objective load balancing multiple allocation hub location: a compromise programming approach

In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both...

Full description

Saved in:
Bibliographic Details
Published in:Annals of operations research 2021-01, Vol.296 (1-2), p.363-406
Main Authors: Monemi, Rahimeh Neamatian, Gelareh, Shahin, Nagih, Anass, Jones, Dylan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193
cites cdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193
container_end_page 406
container_issue 1-2
container_start_page 363
container_title Annals of operations research
container_volume 296
creator Monemi, Rahimeh Neamatian
Gelareh, Shahin
Nagih, Anass
Jones, Dylan
description In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances.
doi_str_mv 10.1007/s10479-019-03421-w
format article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04538558v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650693608</galeid><sourcerecordid>A650693608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0f6AnQU-FOh1Zki33tg1tU1joJTmLkSx5tdjW1rIT8u-rrfuRQAhCGmZ43tEMLyFvGZwzgPpjYiDqpgCWLxclK26fkQ2TdVk0nKvnZAOlFIXkHF6SVykdAIAxJTdEfw5FNAdn53DjaB-xpQZ7HG0YOzos_RyOvaPY99HiHOJI94uhf5NPFKmNw3GKQ0iO5thNOAwnKR5zhnb_mrzw2Cf35k88I9dfv1xdXBa7H9--X2x3hZXA5qJW1pS1bz0IwZQQtWyVL43zwqKxVlTKS1-ia8E1FowxDiuP3gon0TPW8DPyfu27x14fpzDgdKcjBn253elTDYTkSkp1wzL7bmXziD8Xl2Z9iMs05vF0mX8uoZLqHtVh73QYfZwntHlRq7eVhKrhFahMnT9C5dO6Idg4Oh9y_YHgwz2BWVIYXcpPCt1-Th0uKT3EyxW3U0xpcv7fcgz0yXq9Wq-z9fq39fo2i_gqShkeOzf9X_AJ1S-vMbHt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475206581</pqid></control><display><type>article</type><title>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Monemi, Rahimeh Neamatian ; Gelareh, Shahin ; Nagih, Anass ; Jones, Dylan</creator><creatorcontrib>Monemi, Rahimeh Neamatian ; Gelareh, Shahin ; Nagih, Anass ; Jones, Dylan</creatorcontrib><description>In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-019-03421-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Business and Management ; Combinatorics ; Computer Science ; Linear programming ; Mathematical optimization ; Mathematics ; Methods ; Mixed integer ; Nodes ; Nonlinear programming ; Operating costs ; Operations research ; Operations Research/Decision Theory ; Resource allocation ; S.i.: Mopgp 2017 ; Spatial distribution ; Theory of Computation ; Transportation</subject><ispartof>Annals of operations research, 2021-01, Vol.296 (1-2), p.363-406</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</citedby><cites>FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</cites><orcidid>0000-0001-5192-5247 ; 0000-0002-6606-9698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2475206581/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2475206581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04538558$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Monemi, Rahimeh Neamatian</creatorcontrib><creatorcontrib>Gelareh, Shahin</creatorcontrib><creatorcontrib>Nagih, Anass</creatorcontrib><creatorcontrib>Jones, Dylan</creatorcontrib><title>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances.</description><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Linear programming</subject><subject>Mathematical optimization</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Mixed integer</subject><subject>Nodes</subject><subject>Nonlinear programming</subject><subject>Operating costs</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Resource allocation</subject><subject>S.i.: Mopgp 2017</subject><subject>Spatial distribution</subject><subject>Theory of Computation</subject><subject>Transportation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU1r3DAQhkVpodu0f6AnQU-FOh1Zki33tg1tU1joJTmLkSx5tdjW1rIT8u-rrfuRQAhCGmZ43tEMLyFvGZwzgPpjYiDqpgCWLxclK26fkQ2TdVk0nKvnZAOlFIXkHF6SVykdAIAxJTdEfw5FNAdn53DjaB-xpQZ7HG0YOzos_RyOvaPY99HiHOJI94uhf5NPFKmNw3GKQ0iO5thNOAwnKR5zhnb_mrzw2Cf35k88I9dfv1xdXBa7H9--X2x3hZXA5qJW1pS1bz0IwZQQtWyVL43zwqKxVlTKS1-ia8E1FowxDiuP3gon0TPW8DPyfu27x14fpzDgdKcjBn253elTDYTkSkp1wzL7bmXziD8Xl2Z9iMs05vF0mX8uoZLqHtVh73QYfZwntHlRq7eVhKrhFahMnT9C5dO6Idg4Oh9y_YHgwz2BWVIYXcpPCt1-Th0uKT3EyxW3U0xpcv7fcgz0yXq9Wq-z9fq39fo2i_gqShkeOzf9X_AJ1S-vMbHt</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Monemi, Rahimeh Neamatian</creator><creator>Gelareh, Shahin</creator><creator>Nagih, Anass</creator><creator>Jones, Dylan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5192-5247</orcidid><orcidid>https://orcid.org/0000-0002-6606-9698</orcidid></search><sort><creationdate>20210101</creationdate><title>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</title><author>Monemi, Rahimeh Neamatian ; Gelareh, Shahin ; Nagih, Anass ; Jones, Dylan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Linear programming</topic><topic>Mathematical optimization</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Mixed integer</topic><topic>Nodes</topic><topic>Nonlinear programming</topic><topic>Operating costs</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Resource allocation</topic><topic>S.i.: Mopgp 2017</topic><topic>Spatial distribution</topic><topic>Theory of Computation</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monemi, Rahimeh Neamatian</creatorcontrib><creatorcontrib>Gelareh, Shahin</creatorcontrib><creatorcontrib>Nagih, Anass</creatorcontrib><creatorcontrib>Jones, Dylan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monemi, Rahimeh Neamatian</au><au>Gelareh, Shahin</au><au>Nagih, Anass</au><au>Jones, Dylan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi-objective load balancing multiple allocation hub location: a compromise programming approach</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><issue>1-2</issue><spage>363</spage><epage>406</epage><pages>363-406</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>In this paper we address unbalanced spatial distribution of hub-level flows in an optimal hub-and-spoke network structure of median-type models. Our study is based on a rather general variant of the multiple allocation hub location problems with fixed setup costs for hub nodes and hub edges in both capacitated and uncapacitated variants wherein the number of hub nodes traversed along origin-destination pairs is not constrained to one or two as in the classical models.. From the perspective of an infrastructure owner, we want to make sure that there exists a choice of design for the hub-level sub-network (hubs and hub edges) that considers both objectives of minimizing cost of transportation and balancing spatial distribution of flow across the hub-level network. We propose a bi-objective (transportation cost and hub-level flow variance) mixed integer non-linear programming formulation and handle the bi-objective model via a compromise programming framework. We exploit the structure of the problem and propose a second-order conic reformulation of the model along with a very efficient matheuristics algorithm for larger size instances.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-019-03421-w</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0001-5192-5247</orcidid><orcidid>https://orcid.org/0000-0002-6606-9698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2021-01, Vol.296 (1-2), p.363-406
issn 0254-5330
1572-9338
language eng
recordid cdi_hal_primary_oai_HAL_hal_04538558v1
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM global; Springer Nature
subjects Algorithms
Business and Management
Combinatorics
Computer Science
Linear programming
Mathematical optimization
Mathematics
Methods
Mixed integer
Nodes
Nonlinear programming
Operating costs
Operations research
Operations Research/Decision Theory
Resource allocation
S.i.: Mopgp 2017
Spatial distribution
Theory of Computation
Transportation
title Bi-objective load balancing multiple allocation hub location: a compromise programming approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi-objective%20load%20balancing%20multiple%20allocation%20hub%20location:%20a%20compromise%20programming%20approach&rft.jtitle=Annals%20of%20operations%20research&rft.au=Monemi,%20Rahimeh%20Neamatian&rft.date=2021-01-01&rft.volume=296&rft.issue=1-2&rft.spage=363&rft.epage=406&rft.pages=363-406&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-019-03421-w&rft_dat=%3Cgale_hal_p%3EA650693608%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-78cb27fdf044184475d8f2bef4cabcc468f5f2aed0e9c0bbbea6fafc4e5af1193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2475206581&rft_id=info:pmid/&rft_galeid=A650693608&rfr_iscdi=true