Loading…

Assessment of 9 km SMAP soil moisture: Evidence of narrowing the gap between satellite retrievals and model-based reanalysis

A number of global surface soil moisture (SM) datasets have been retrieved from the L-band frequency Soil Moisture Active Passive (SMAP) and the Soil Moisture and Ocean Salinity (SMOS) missions to study the terrestrial water, energy, and carbon cycles. This paper presents the performance of the rece...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2023-10, Vol.296, p.113721, Article 113721
Main Authors: Xing, Zanpin, Li, Xiaojun, Fan, Lei, Colliander, Andreas, Frappart, Frédéric, de Rosnay, Patricia, Liu, Xiangzhuo, Wang, Huang, Zhao, Lin, Wigneron, Jean-Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A number of global surface soil moisture (SM) datasets have been retrieved from the L-band frequency Soil Moisture Active Passive (SMAP) and the Soil Moisture and Ocean Salinity (SMOS) missions to study the terrestrial water, energy, and carbon cycles. This paper presents the performance of the recently developed 9 km global SMAP product (hereafter SMAP-INRAE-BORDEAUX, SMAP-IB9). The product retrieves SM from the 9 km SMAP radiometric products using the forward model (L-MEB, L-band Microwave Emission of the Biosphere) of SMOS INRA-CESBIO (SMOS-IC) and SMOS L2 algorithms. We inter-compared SMAP-IB9 with two other products with a similar grid resolution (~10 km): the SMAP Enhanced Level-3 SM data set (SMAP-E) and the enhanced global dataset for the land component of the fifth generation of European reanalysis (ERA5-Land) with the main objective of assessing the discrepancy in accuracy between remotely sensed and model SM datasets. We found that ERA5-Land and SMAP-IB9 SM had the overall highest correlations (R = 0.62(±0.15) for ERA5-Land vs. 0.60(±0.17) for SMAP-IB9 and 0.50(±0.15) for SMAP-E) by comparing with the International Soil Moisture Network (ISMN) in-situ measurements from 22 networks. ERA5-Land showed better performances in the forest areas where SMAP-IB9 and SMAP-E still showed high potential in detecting the time variations of the observed SM, particularly in terms of median correlation values (0.62(±0.18) for SMAP-IB9 vs. 0.66(±0.16) for ERA5-and). The discrepancy in R between satellite and model SM products that were reported in some past studies has decreased to statistically insignificant levels over time. For instance, in the non-forest areas, we found that the latest versions of the SMAP SM products (SMAP-E and SMAP-IB9) had relatively comparable performances with ERA5-Land with regard to median ubRMSE (0.07(±0.02) m3/m3 for SMAP-E and ERA5-Land) and R (0.59(±0.16) for SMAP-IB9 vs. 0.61(±0.15) for ERA5-Land), respectively. •A newly developed 9 km global SMAP-IB SM product was evaluated.•SMAP-IB and SMAP-L3 SM had comparable accuracy with ERA5-Land over non-forest regions.•Difference in correlation between remote sensing and model SM decreased over time.
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2023.113721