Loading…

Topology- and Perception-Aware Image Vectorization

We propose a new color image vectorization method converting raster images to resolution-independent scalable vector graphics. Starting from a quantized raster image, the method builds a hierarchical structure to represent its discontinuity set. The lowest level elements, called curve-elements, sepa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical imaging and vision 2023-12, Vol.65 (6), p.874-893
Main Authors: He, Yuchen, Kang, Sung Ha, Morel, Jean-Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-90990914ea81cb7916cde6f3f863a1bd937221d191af6862a68757c5b2f6dec33
cites cdi_FETCH-LOGICAL-c397t-90990914ea81cb7916cde6f3f863a1bd937221d191af6862a68757c5b2f6dec33
container_end_page 893
container_issue 6
container_start_page 874
container_title Journal of mathematical imaging and vision
container_volume 65
creator He, Yuchen
Kang, Sung Ha
Morel, Jean-Michel
description We propose a new color image vectorization method converting raster images to resolution-independent scalable vector graphics. Starting from a quantized raster image, the method builds a hierarchical structure to represent its discontinuity set. The lowest level elements, called curve-elements, separate exactly two colors and end at T-junctions or X-junctions. The middle-level objects, called curvebases, are concatenations of curve-elements following perceptual rules and representing the apparent contours of objects. On the highest level, the jump set coincides with the discontinuity set of the quantized image input. A geometric filtering method removes pixelization effects by affine shortening of the curvebases while resolving the induced topological changes. All junctions are preserved, thus maintaining the highest level of perceptual fidelity even on tiny pixel art images. A single parameter controls the simplification of curves between two junctions. Theoretical bounds are given to guarantee the method’s topological consistency. This allows the method to be iterated such that it yields a smoothing semigroup. In both qualitative and quantitative experiments, our method compares favorably to multiple state-of-the-art algorithms and software.
doi_str_mv 10.1007/s10851-023-01149-8
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04544335v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879581307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-90990914ea81cb7916cde6f3f863a1bd937221d191af6862a68757c5b2f6dec33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCJw_RmWQ3H8dS1BYKeqheQ5rN1i1tsyZbpf56t67ozVNg8rzvDA8hlwg3CCBvE4IqkALjFBBzTdURGWAhOZVC8WMyAM1yqjXIU3KW0goAFEM5IGwemrAOyz3N7LbMnnx0vmnrsKWjDxt9Nt3Ypc9evGtDrD_t4eecnFR2nfzFzzskz_d38_GEzh4fpuPRjDquZUs1dOs05t4qdAupUbjSi4pXSnCLi1JzyRiWqNFWQglmhZKFdMWCVaL0jvMhue57X-3aNLHe2Lg3wdZmMpqZwwzyIs85L96xY696tonhbedTa1ZhF7fdeYYpqQuFHGRHsZ5yMaQUffVbi2AOHk3v0XQezbdHo7oQ70Opg7dLH_-q_0l9AXkecv4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879581307</pqid></control><display><type>article</type><title>Topology- and Perception-Aware Image Vectorization</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>He, Yuchen ; Kang, Sung Ha ; Morel, Jean-Michel</creator><creatorcontrib>He, Yuchen ; Kang, Sung Ha ; Morel, Jean-Michel</creatorcontrib><description>We propose a new color image vectorization method converting raster images to resolution-independent scalable vector graphics. Starting from a quantized raster image, the method builds a hierarchical structure to represent its discontinuity set. The lowest level elements, called curve-elements, separate exactly two colors and end at T-junctions or X-junctions. The middle-level objects, called curvebases, are concatenations of curve-elements following perceptual rules and representing the apparent contours of objects. On the highest level, the jump set coincides with the discontinuity set of the quantized image input. A geometric filtering method removes pixelization effects by affine shortening of the curvebases while resolving the induced topological changes. All junctions are preserved, thus maintaining the highest level of perceptual fidelity even on tiny pixel art images. A single parameter controls the simplification of curves between two junctions. Theoretical bounds are given to guarantee the method’s topological consistency. This allows the method to be iterated such that it yields a smoothing semigroup. In both qualitative and quantitative experiments, our method compares favorably to multiple state-of-the-art algorithms and software.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-023-01149-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Color imagery ; Computer Science ; Discontinuity ; Image filters ; Image Processing and Computer Vision ; Mathematical Methods in Physics ; Mathematics ; Raster ; Semigroups ; Signal,Image and Speech Processing ; Topology</subject><ispartof>Journal of mathematical imaging and vision, 2023-12, Vol.65 (6), p.874-893</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-90990914ea81cb7916cde6f3f863a1bd937221d191af6862a68757c5b2f6dec33</citedby><cites>FETCH-LOGICAL-c397t-90990914ea81cb7916cde6f3f863a1bd937221d191af6862a68757c5b2f6dec33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04544335$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yuchen</creatorcontrib><creatorcontrib>Kang, Sung Ha</creatorcontrib><creatorcontrib>Morel, Jean-Michel</creatorcontrib><title>Topology- and Perception-Aware Image Vectorization</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>We propose a new color image vectorization method converting raster images to resolution-independent scalable vector graphics. Starting from a quantized raster image, the method builds a hierarchical structure to represent its discontinuity set. The lowest level elements, called curve-elements, separate exactly two colors and end at T-junctions or X-junctions. The middle-level objects, called curvebases, are concatenations of curve-elements following perceptual rules and representing the apparent contours of objects. On the highest level, the jump set coincides with the discontinuity set of the quantized image input. A geometric filtering method removes pixelization effects by affine shortening of the curvebases while resolving the induced topological changes. All junctions are preserved, thus maintaining the highest level of perceptual fidelity even on tiny pixel art images. A single parameter controls the simplification of curves between two junctions. Theoretical bounds are given to guarantee the method’s topological consistency. This allows the method to be iterated such that it yields a smoothing semigroup. In both qualitative and quantitative experiments, our method compares favorably to multiple state-of-the-art algorithms and software.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Color imagery</subject><subject>Computer Science</subject><subject>Discontinuity</subject><subject>Image filters</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Raster</subject><subject>Semigroups</subject><subject>Signal,Image and Speech Processing</subject><subject>Topology</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCJw_RmWQ3H8dS1BYKeqheQ5rN1i1tsyZbpf56t67ozVNg8rzvDA8hlwg3CCBvE4IqkALjFBBzTdURGWAhOZVC8WMyAM1yqjXIU3KW0goAFEM5IGwemrAOyz3N7LbMnnx0vmnrsKWjDxt9Nt3Ypc9evGtDrD_t4eecnFR2nfzFzzskz_d38_GEzh4fpuPRjDquZUs1dOs05t4qdAupUbjSi4pXSnCLi1JzyRiWqNFWQglmhZKFdMWCVaL0jvMhue57X-3aNLHe2Lg3wdZmMpqZwwzyIs85L96xY696tonhbedTa1ZhF7fdeYYpqQuFHGRHsZ5yMaQUffVbi2AOHk3v0XQezbdHo7oQ70Opg7dLH_-q_0l9AXkecv4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>He, Yuchen</creator><creator>Kang, Sung Ha</creator><creator>Morel, Jean-Michel</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20231201</creationdate><title>Topology- and Perception-Aware Image Vectorization</title><author>He, Yuchen ; Kang, Sung Ha ; Morel, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-90990914ea81cb7916cde6f3f863a1bd937221d191af6862a68757c5b2f6dec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Color imagery</topic><topic>Computer Science</topic><topic>Discontinuity</topic><topic>Image filters</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Raster</topic><topic>Semigroups</topic><topic>Signal,Image and Speech Processing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yuchen</creatorcontrib><creatorcontrib>Kang, Sung Ha</creatorcontrib><creatorcontrib>Morel, Jean-Michel</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yuchen</au><au>Kang, Sung Ha</au><au>Morel, Jean-Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology- and Perception-Aware Image Vectorization</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>65</volume><issue>6</issue><spage>874</spage><epage>893</epage><pages>874-893</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>We propose a new color image vectorization method converting raster images to resolution-independent scalable vector graphics. Starting from a quantized raster image, the method builds a hierarchical structure to represent its discontinuity set. The lowest level elements, called curve-elements, separate exactly two colors and end at T-junctions or X-junctions. The middle-level objects, called curvebases, are concatenations of curve-elements following perceptual rules and representing the apparent contours of objects. On the highest level, the jump set coincides with the discontinuity set of the quantized image input. A geometric filtering method removes pixelization effects by affine shortening of the curvebases while resolving the induced topological changes. All junctions are preserved, thus maintaining the highest level of perceptual fidelity even on tiny pixel art images. A single parameter controls the simplification of curves between two junctions. Theoretical bounds are given to guarantee the method’s topological consistency. This allows the method to be iterated such that it yields a smoothing semigroup. In both qualitative and quantitative experiments, our method compares favorably to multiple state-of-the-art algorithms and software.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-023-01149-8</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2023-12, Vol.65 (6), p.874-893
issn 0924-9907
1573-7683
language eng
recordid cdi_hal_primary_oai_HAL_hal_04544335v1
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Applications of Mathematics
Color imagery
Computer Science
Discontinuity
Image filters
Image Processing and Computer Vision
Mathematical Methods in Physics
Mathematics
Raster
Semigroups
Signal,Image and Speech Processing
Topology
title Topology- and Perception-Aware Image Vectorization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology-%20and%20Perception-Aware%20Image%20Vectorization&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=He,%20Yuchen&rft.date=2023-12-01&rft.volume=65&rft.issue=6&rft.spage=874&rft.epage=893&rft.pages=874-893&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-023-01149-8&rft_dat=%3Cproquest_hal_p%3E2879581307%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-90990914ea81cb7916cde6f3f863a1bd937221d191af6862a68757c5b2f6dec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879581307&rft_id=info:pmid/&rfr_iscdi=true