Loading…
Vibronic Correlations in Molecular Strong-Field Dynamics
We investigate the ultrafast vibronic dynamics triggered by intense femtosecond infrared pulses in small molecules. Our study is based on numerical simulations performed with 2D model molecules and analyzed in the perspective of the renowned Lochfrass and bond-softening models. We give a new interpr...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-05, Vol.128 (19), p.3764-3776 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the ultrafast vibronic dynamics triggered by intense femtosecond infrared pulses in small molecules. Our study is based on numerical simulations performed with 2D model molecules and analyzed in the perspective of the renowned Lochfrass and bond-softening models. We give a new interpretation of the observed nuclear wave packet dynamics with a focus on the phase of the bond oscillations. Our simulations also reveal intricate features in the field-induced nuclear motion that are not accounted for by existing models. Our analyses assign these features to strong dynamical correlations between the active electron and the nuclei, which significantly depend on the carrier envelope phase of the pulse, even for relatively “long” pulses, which should make them experimentally observable. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.3c07833 |