Loading…

Vibronic Correlations in Molecular Strong-Field Dynamics

We investigate the ultrafast vibronic dynamics triggered by intense femtosecond infrared pulses in small molecules. Our study is based on numerical simulations performed with 2D model molecules and analyzed in the perspective of the renowned Lochfrass and bond-softening models. We give a new interpr...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-05, Vol.128 (19), p.3764-3776
Main Authors: Labeye, Marie, Lévêque, Camille, Risoud, François, Maquet, Alfred, Caillat, Jérémie, Taïeb, Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the ultrafast vibronic dynamics triggered by intense femtosecond infrared pulses in small molecules. Our study is based on numerical simulations performed with 2D model molecules and analyzed in the perspective of the renowned Lochfrass and bond-softening models. We give a new interpretation of the observed nuclear wave packet dynamics with a focus on the phase of the bond oscillations. Our simulations also reveal intricate features in the field-induced nuclear motion that are not accounted for by existing models. Our analyses assign these features to strong dynamical correlations between the active electron and the nuclei, which significantly depend on the carrier envelope phase of the pulse, even for relatively “long” pulses, which should make them experimentally observable.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.3c07833