Loading…

Visual feedbacks influence short-term learning of torque versus motion profile with robotic guidance among young adults

Robotic assistance can improve the learning of complex motor skills. However, the assistance designed and used up to now mainly guides motor commands for trajectory learning, not dynamics learning. The present study explored how a complex motor skill involving the right arm can be learned without su...

Full description

Saved in:
Bibliographic Details
Published in:Human movement science 2024-06, Vol.95, p.103221-103221, Article 103221
Main Authors: Scotto, C.R., Blandin, Y., Crolan, R., Eon, A., Laguillaumie, P., Decatoire, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Robotic assistance can improve the learning of complex motor skills. However, the assistance designed and used up to now mainly guides motor commands for trajectory learning, not dynamics learning. The present study explored how a complex motor skill involving the right arm can be learned without suppressing task dynamics, by means of an innovative device with robotic guidance that allows a torque versus motion profile to be learned with admittance control. In addition, we assessed how concurrent visual feedback on this profile can enhance learning without creating dependency, by means of a fading procedure (i.e., feedback reduction across trials). On Day 1, a Control group performed an acquisition session (6 blocks) featuring concurrent visual feedback, while a Fading group performed the session with a gradual reduction in feedback (from 100% to 0% over the 6 blocks). On Day 2, both groups performed a block first without feedback (i.e., Transfer test), then with feedback (i.e., Retention test). Results revealed that on Day 1, movement rehearsal induced a significant improvement in spatiotemporal parameters for the Control group, compared with the Fading group. On Day 2, the opposite was found when this visual feedback was removed, as the Fading group performed significantly better than the Control group on the Transfer test. Vision allows a relationship to be established between the required torque and the motion profile. Its suppression then forces the processing of more intrinsic information, leading to the development of a stable internal representation of the task.
ISSN:0167-9457
1872-7646
DOI:10.1016/j.humov.2024.103221