Loading…

The population of Galactic supernova remnants in the TeV range

Context. Supernova remnants (SNRs) are likely to be significant sources of cosmic rays up to the knee of the local cosmic-ray (CR) spectrum. They produce gamma rays in the very-high-energy (VHE) ( E > 0.1 TeV) range mainly via two mechanisms: hadronic interactions of accelerated protons with the...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2024-07, Vol.687, p.A279
Main Authors: Batzofin, Rowan, Cristofari, Pierre, Egberts, Kathrin, Steppa, Constantin, Meyer, Dominique M.-A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c191t-4059f79138fff496d9c0b0a544655ea1fa55ca795e95e2d71d9339548bd6fbb03
container_end_page
container_issue
container_start_page A279
container_title Astronomy and astrophysics (Berlin)
container_volume 687
creator Batzofin, Rowan
Cristofari, Pierre
Egberts, Kathrin
Steppa, Constantin
Meyer, Dominique M.-A.
description Context. Supernova remnants (SNRs) are likely to be significant sources of cosmic rays up to the knee of the local cosmic-ray (CR) spectrum. They produce gamma rays in the very-high-energy (VHE) ( E > 0.1 TeV) range mainly via two mechanisms: hadronic interactions of accelerated protons with the interstellar medium and leptonic interactions of accelerated electrons with soft photons. Observations with current instruments have lead to the detection of about a dozen SNRs emitting VHE gamma rays and future instruments should significantly increase this number. Yet, the details of particle acceleration at SNRs and of the mechanisms producing VHE gamma-rays at SNRs remain poorly understood. Aims. We aim to study the population of SNRs detected in the TeV range and its properties and confront it to simulated samples in order to address fundamental questions concerning particle acceleration at SNR shocks. Such questions concern the spectrum of accelerated particles, the efficiency of particle acceleration, and the gamma-ray emission being dominated by hadronic or leptonic interactions. Methods. By means of Monte Carlo methods, we simulated the population of SNRs in the gamma-ray domain and confronted our simulations to the catalogue of sources from the High Energy Stereoscopic System (H.E.S.S.) Galactic Plane Survey (HGPS). Results. We systematically explored the parameter space defined in our model, including for example, the slope of accelerated particles α , the electron-to-proton ratio K ep , and the efficiency of particle acceleration ξ . In particular, we found possible sets of parameters for which ≳90% of Monte Carlo realisations are found to be in agreement with the HGPS. These parameters are typically found at 4.2 ≳ α ≳ 4.1, 10 −5 ≲ K ep ≲ 10 −4.5 , and 0.03 ≲ ξ ≲ 0.1. We are able to strongly argue against some regions of the parameter space describing the population of Galactic SNRs in the TeV range, such as α ≲ 4.05, α ≳ 4.35, or K ep ≳ 10 −3 . Conclusions. Our model is so far able to explain the SNR population of the HGPS. Our approach, when confronted with the results of future systematic surveys, such as the Cherenkov Telescope Array Observatory, will help remove degeneracy from the solutions and to better understand particle acceleration at SNR shocks in the Galaxy.
doi_str_mv 10.1051/0004-6361/202449779
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04570582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082664116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-4059f79138fff496d9c0b0a544655ea1fa55ca795e95e2d71d9339548bd6fbb03</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gZcFTx5iZ7IfyV6EUrQVCl6q12WT7NqUNBt3E8F_b0KlMDDM8MzL8BByj_CEIHABADyRTOIihZRzlWXqgsyQszSBjMtLMjsT1-QmxsM4ppizGXne7S3tfDc0pq99S72ja9OYsq9LGofOhtb_GBrssTVtH2nd0n482NlPGkz7ZW_JlTNNtHf_fU4-Xl92q02yfV-_rZbbpESFfcJBKJcpZLlzjitZqRIKMIJzKYQ16IwQpcmUsGOlVYaVYkwJnheVdEUBbE4eT7l70-gu1EcTfrU3td4st3raARcZiDz9wZF9OLFd8N-Djb0--CG043uaQZ5KyRHlSLETVQYfY7DuHIugJ6l6UqYnZfoslf0BrqZnNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3082664116</pqid></control><display><type>article</type><title>The population of Galactic supernova remnants in the TeV range</title><source>EZB Free E-Journals</source><creator>Batzofin, Rowan ; Cristofari, Pierre ; Egberts, Kathrin ; Steppa, Constantin ; Meyer, Dominique M.-A.</creator><creatorcontrib>Batzofin, Rowan ; Cristofari, Pierre ; Egberts, Kathrin ; Steppa, Constantin ; Meyer, Dominique M.-A.</creatorcontrib><description>Context. Supernova remnants (SNRs) are likely to be significant sources of cosmic rays up to the knee of the local cosmic-ray (CR) spectrum. They produce gamma rays in the very-high-energy (VHE) ( E &gt; 0.1 TeV) range mainly via two mechanisms: hadronic interactions of accelerated protons with the interstellar medium and leptonic interactions of accelerated electrons with soft photons. Observations with current instruments have lead to the detection of about a dozen SNRs emitting VHE gamma rays and future instruments should significantly increase this number. Yet, the details of particle acceleration at SNRs and of the mechanisms producing VHE gamma-rays at SNRs remain poorly understood. Aims. We aim to study the population of SNRs detected in the TeV range and its properties and confront it to simulated samples in order to address fundamental questions concerning particle acceleration at SNR shocks. Such questions concern the spectrum of accelerated particles, the efficiency of particle acceleration, and the gamma-ray emission being dominated by hadronic or leptonic interactions. Methods. By means of Monte Carlo methods, we simulated the population of SNRs in the gamma-ray domain and confronted our simulations to the catalogue of sources from the High Energy Stereoscopic System (H.E.S.S.) Galactic Plane Survey (HGPS). Results. We systematically explored the parameter space defined in our model, including for example, the slope of accelerated particles α , the electron-to-proton ratio K ep , and the efficiency of particle acceleration ξ . In particular, we found possible sets of parameters for which ≳90% of Monte Carlo realisations are found to be in agreement with the HGPS. These parameters are typically found at 4.2 ≳ α ≳ 4.1, 10 −5 ≲ K ep ≲ 10 −4.5 , and 0.03 ≲ ξ ≲ 0.1. We are able to strongly argue against some regions of the parameter space describing the population of Galactic SNRs in the TeV range, such as α ≲ 4.05, α ≳ 4.35, or K ep ≳ 10 −3 . Conclusions. Our model is so far able to explain the SNR population of the HGPS. Our approach, when confronted with the results of future systematic surveys, such as the Cherenkov Telescope Array Observatory, will help remove degeneracy from the solutions and to better understand particle acceleration at SNR shocks in the Galaxy.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202449779</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astrophysics ; Charged particles ; Cosmic rays ; Electrons ; Gamma emission ; Gamma rays ; High energy astronomy ; Interstellar matter ; Leptons ; Monte Carlo simulation ; Parameters ; Particle acceleration ; Particle physics ; Physics ; Protons ; Questions ; Supernova remnants ; Supernovae</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-07, Vol.687, p.A279</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-4059f79138fff496d9c0b0a544655ea1fa55ca795e95e2d71d9339548bd6fbb03</cites><orcidid>0000-0001-8258-9813 ; 0000-0002-5856-7662 ; 0000-0003-0116-8836 ; 0000-0002-5797-3386 ; 0009-0000-5511-7060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04570582$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Batzofin, Rowan</creatorcontrib><creatorcontrib>Cristofari, Pierre</creatorcontrib><creatorcontrib>Egberts, Kathrin</creatorcontrib><creatorcontrib>Steppa, Constantin</creatorcontrib><creatorcontrib>Meyer, Dominique M.-A.</creatorcontrib><title>The population of Galactic supernova remnants in the TeV range</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Supernova remnants (SNRs) are likely to be significant sources of cosmic rays up to the knee of the local cosmic-ray (CR) spectrum. They produce gamma rays in the very-high-energy (VHE) ( E &gt; 0.1 TeV) range mainly via two mechanisms: hadronic interactions of accelerated protons with the interstellar medium and leptonic interactions of accelerated electrons with soft photons. Observations with current instruments have lead to the detection of about a dozen SNRs emitting VHE gamma rays and future instruments should significantly increase this number. Yet, the details of particle acceleration at SNRs and of the mechanisms producing VHE gamma-rays at SNRs remain poorly understood. Aims. We aim to study the population of SNRs detected in the TeV range and its properties and confront it to simulated samples in order to address fundamental questions concerning particle acceleration at SNR shocks. Such questions concern the spectrum of accelerated particles, the efficiency of particle acceleration, and the gamma-ray emission being dominated by hadronic or leptonic interactions. Methods. By means of Monte Carlo methods, we simulated the population of SNRs in the gamma-ray domain and confronted our simulations to the catalogue of sources from the High Energy Stereoscopic System (H.E.S.S.) Galactic Plane Survey (HGPS). Results. We systematically explored the parameter space defined in our model, including for example, the slope of accelerated particles α , the electron-to-proton ratio K ep , and the efficiency of particle acceleration ξ . In particular, we found possible sets of parameters for which ≳90% of Monte Carlo realisations are found to be in agreement with the HGPS. These parameters are typically found at 4.2 ≳ α ≳ 4.1, 10 −5 ≲ K ep ≲ 10 −4.5 , and 0.03 ≲ ξ ≲ 0.1. We are able to strongly argue against some regions of the parameter space describing the population of Galactic SNRs in the TeV range, such as α ≲ 4.05, α ≳ 4.35, or K ep ≳ 10 −3 . Conclusions. Our model is so far able to explain the SNR population of the HGPS. Our approach, when confronted with the results of future systematic surveys, such as the Cherenkov Telescope Array Observatory, will help remove degeneracy from the solutions and to better understand particle acceleration at SNR shocks in the Galaxy.</description><subject>Astrophysics</subject><subject>Charged particles</subject><subject>Cosmic rays</subject><subject>Electrons</subject><subject>Gamma emission</subject><subject>Gamma rays</subject><subject>High energy astronomy</subject><subject>Interstellar matter</subject><subject>Leptons</subject><subject>Monte Carlo simulation</subject><subject>Parameters</subject><subject>Particle acceleration</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Protons</subject><subject>Questions</subject><subject>Supernova remnants</subject><subject>Supernovae</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gZcFTx5iZ7IfyV6EUrQVCl6q12WT7NqUNBt3E8F_b0KlMDDM8MzL8BByj_CEIHABADyRTOIihZRzlWXqgsyQszSBjMtLMjsT1-QmxsM4ppizGXne7S3tfDc0pq99S72ja9OYsq9LGofOhtb_GBrssTVtH2nd0n482NlPGkz7ZW_JlTNNtHf_fU4-Xl92q02yfV-_rZbbpESFfcJBKJcpZLlzjitZqRIKMIJzKYQ16IwQpcmUsGOlVYaVYkwJnheVdEUBbE4eT7l70-gu1EcTfrU3td4st3raARcZiDz9wZF9OLFd8N-Djb0--CG043uaQZ5KyRHlSLETVQYfY7DuHIugJ6l6UqYnZfoslf0BrqZnNg</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Batzofin, Rowan</creator><creator>Cristofari, Pierre</creator><creator>Egberts, Kathrin</creator><creator>Steppa, Constantin</creator><creator>Meyer, Dominique M.-A.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8258-9813</orcidid><orcidid>https://orcid.org/0000-0002-5856-7662</orcidid><orcidid>https://orcid.org/0000-0003-0116-8836</orcidid><orcidid>https://orcid.org/0000-0002-5797-3386</orcidid><orcidid>https://orcid.org/0009-0000-5511-7060</orcidid></search><sort><creationdate>20240701</creationdate><title>The population of Galactic supernova remnants in the TeV range</title><author>Batzofin, Rowan ; Cristofari, Pierre ; Egberts, Kathrin ; Steppa, Constantin ; Meyer, Dominique M.-A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-4059f79138fff496d9c0b0a544655ea1fa55ca795e95e2d71d9339548bd6fbb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrophysics</topic><topic>Charged particles</topic><topic>Cosmic rays</topic><topic>Electrons</topic><topic>Gamma emission</topic><topic>Gamma rays</topic><topic>High energy astronomy</topic><topic>Interstellar matter</topic><topic>Leptons</topic><topic>Monte Carlo simulation</topic><topic>Parameters</topic><topic>Particle acceleration</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Protons</topic><topic>Questions</topic><topic>Supernova remnants</topic><topic>Supernovae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batzofin, Rowan</creatorcontrib><creatorcontrib>Cristofari, Pierre</creatorcontrib><creatorcontrib>Egberts, Kathrin</creatorcontrib><creatorcontrib>Steppa, Constantin</creatorcontrib><creatorcontrib>Meyer, Dominique M.-A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batzofin, Rowan</au><au>Cristofari, Pierre</au><au>Egberts, Kathrin</au><au>Steppa, Constantin</au><au>Meyer, Dominique M.-A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The population of Galactic supernova remnants in the TeV range</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>687</volume><spage>A279</spage><pages>A279-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. Supernova remnants (SNRs) are likely to be significant sources of cosmic rays up to the knee of the local cosmic-ray (CR) spectrum. They produce gamma rays in the very-high-energy (VHE) ( E &gt; 0.1 TeV) range mainly via two mechanisms: hadronic interactions of accelerated protons with the interstellar medium and leptonic interactions of accelerated electrons with soft photons. Observations with current instruments have lead to the detection of about a dozen SNRs emitting VHE gamma rays and future instruments should significantly increase this number. Yet, the details of particle acceleration at SNRs and of the mechanisms producing VHE gamma-rays at SNRs remain poorly understood. Aims. We aim to study the population of SNRs detected in the TeV range and its properties and confront it to simulated samples in order to address fundamental questions concerning particle acceleration at SNR shocks. Such questions concern the spectrum of accelerated particles, the efficiency of particle acceleration, and the gamma-ray emission being dominated by hadronic or leptonic interactions. Methods. By means of Monte Carlo methods, we simulated the population of SNRs in the gamma-ray domain and confronted our simulations to the catalogue of sources from the High Energy Stereoscopic System (H.E.S.S.) Galactic Plane Survey (HGPS). Results. We systematically explored the parameter space defined in our model, including for example, the slope of accelerated particles α , the electron-to-proton ratio K ep , and the efficiency of particle acceleration ξ . In particular, we found possible sets of parameters for which ≳90% of Monte Carlo realisations are found to be in agreement with the HGPS. These parameters are typically found at 4.2 ≳ α ≳ 4.1, 10 −5 ≲ K ep ≲ 10 −4.5 , and 0.03 ≲ ξ ≲ 0.1. We are able to strongly argue against some regions of the parameter space describing the population of Galactic SNRs in the TeV range, such as α ≲ 4.05, α ≳ 4.35, or K ep ≳ 10 −3 . Conclusions. Our model is so far able to explain the SNR population of the HGPS. Our approach, when confronted with the results of future systematic surveys, such as the Cherenkov Telescope Array Observatory, will help remove degeneracy from the solutions and to better understand particle acceleration at SNR shocks in the Galaxy.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202449779</doi><orcidid>https://orcid.org/0000-0001-8258-9813</orcidid><orcidid>https://orcid.org/0000-0002-5856-7662</orcidid><orcidid>https://orcid.org/0000-0003-0116-8836</orcidid><orcidid>https://orcid.org/0000-0002-5797-3386</orcidid><orcidid>https://orcid.org/0009-0000-5511-7060</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-07, Vol.687, p.A279
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_04570582v1
source EZB Free E-Journals
subjects Astrophysics
Charged particles
Cosmic rays
Electrons
Gamma emission
Gamma rays
High energy astronomy
Interstellar matter
Leptons
Monte Carlo simulation
Parameters
Particle acceleration
Particle physics
Physics
Protons
Questions
Supernova remnants
Supernovae
title The population of Galactic supernova remnants in the TeV range
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20population%20of%20Galactic%20supernova%20remnants%20in%20the%20TeV%20range&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Batzofin,%20Rowan&rft.date=2024-07-01&rft.volume=687&rft.spage=A279&rft.pages=A279-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202449779&rft_dat=%3Cproquest_hal_p%3E3082664116%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c191t-4059f79138fff496d9c0b0a544655ea1fa55ca795e95e2d71d9339548bd6fbb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3082664116&rft_id=info:pmid/&rfr_iscdi=true