Loading…
Reversible solvent interactions with UiO-67 metal–organic frameworks
The utility of UiO-67 Metal–Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF–analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactio...
Saved in:
Published in: | The Journal of chemical physics 2024-01, Vol.160 (4) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The utility of UiO-67 Metal–Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF–analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactions with simple polar and non-polar analytes. This problem is approached by investigating the interactions of polar (acetone and isopropanol) and non-polar (n-heptane) molecules with functionalized UiO-67 MOFs via temperature programmed desorption mass spectrometry and temperature programmed Fourier transform infrared spectroscopy. We find that isopropanol, acetone, and n-heptane bind reversibly and non-destructively to UiO-67 MOFs, where MOF and analyte functionality influence relative binding strengths (n-heptane ≈ isopropanol > acetone). During heating, all three analytes diffuse into the internal pore environment and directly interact with the μ3-OH groups located within the tetrahedral pores, evidenced by the IR response of ν(μ3-OH). We observe nonlinear changes in the infrared cross sections of the ν(CH) modes of acetone, isopropanol, and n-heptane following diffusion into UiO-67. Similarly, acetone’s ν(C=O) infrared cross section increases dramatically when diffused into UiO-67. Ultimately, this in situ investigation provides insights into how individual molecular functional groups interact with UiO MOFs and enables a foundation where MOF interactions with complex molecular systems can be evaluated. |
---|---|
ISSN: | 0021-9606 1089-7690 1089-7690 |
DOI: | 10.1063/5.0180924 |