Loading…
High-resolution optical imaging of single magnetic flux quanta with a solid immersion lens
Magneto-optical imaging of quantized magnetic flux tubes in superconductors – Abrikosov vortices – is based on Faraday rotation of light polarization within a magneto-optical indicator placed on top of the superconductor. Due to severe aberrations induced by the thick indicator substrate, the spatia...
Saved in:
Published in: | Optics express 2023-07, Vol.31 (15) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Magneto-optical imaging of quantized magnetic flux tubes in superconductors – Abrikosov vortices – is based on Faraday rotation of light polarization within a magneto-optical indicator placed on top of the superconductor. Due to severe aberrations induced by the thick indicator substrate, the spatial resolution of vortices is usually well beyond the optical diffraction limit. Using a high refractive index solid immersion lens placed onto the indicator garnet substrate, we demonstrate wide field optical imaging of single flux quanta in a Niobium film with a resolution better than 600 nm and sub-second acquisition periods, paving the way to high-precision and fast vortex manipulation. Vectorial field simulations are also performed to reproduce and optimize the experimental features of vortex images. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.494474 |