Loading…

Self-supervised component separation for the extragalactic submillimetre sky

We use a new approach based on self-supervised deep learning networks originally applied to transparency separation in order to simultaneously extract the components of the extragalactic submillimeter sky, namely the cosmic microwave background (CMB), the cosmic infrared background (CIB), and the Su...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2024-06, Vol.686, p.A91
Main Authors: Bonjean, V., Tanimura, H., Aghanim, N., Bonnaire, T., Douspis, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We use a new approach based on self-supervised deep learning networks originally applied to transparency separation in order to simultaneously extract the components of the extragalactic submillimeter sky, namely the cosmic microwave background (CMB), the cosmic infrared background (CIB), and the Sunyaev–Zeldovich (SZ) effect. In this proof-of-concept paper, we test our approach on the WebSky extragalactic simulation maps in a range of frequencies from 93 to 545 GHz, and compare with one of the state-of-the-art traditional methods, MILCA, for the case of SZ. We first visually compare the images, and then statistically analyse the full-sky reconstructed high-resolution maps with power spectra. We study the contamination from other components with cross spectra, and particularly emphasise the correlation between the CIB and the SZ effect and compute SZ fluxes around positions of galaxy clusters. The independent networks learn how to reconstruct the different components with less contamination than MILCA. Although this is tested here in an ideal case (without noise, beams, or foregrounds), this method shows significant potential for application in future experiments such as the Simons Observatory (SO) in combination with the Planck satellite.
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/202245624